Self-Adapting Feature Layers

  • Pia Breuer
  • Volker Blanz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6311)


This paper presents a new approach for fitting a 3D morphable model to images of faces, using self-adapting feature layers (SAFL). The algorithm integrates feature detection into an iterative analysis-by-synthesis framework, combining the robustness of feature search with the flexibility of model fitting. Templates for facial features are created and updated while the fitting algorithm converges, so the templates adapt to the pose, illumination, shape and texture of the individual face. Unlike most existing feature-based methods, the algorithm does not search for the image locations with maximum response, which may be prone to errors, but forms a tradeoff between feature likeness, global feature configuration and image reconstruction error.

The benefit of the proposed method is an increased robustness of model fitting with respect to errors in the initial feature point positions. Such residual errors are a problem when feature detection and model fitting are combined to form a fully automated face reconstruction or recognition system. We analyze the robustness in a face recognition scenario on images from two databases: FRGC and FERET.


Face Recognition Recognition Rate Facial Feature Feature Position Active Appearance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-642-15549-9_22_MOESM1_ESM.pdf (12.7 mb)
Electronic Supplementary Material (13,006 KB)


  1. 1.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 1063–1074 (2003)CrossRefGoogle Scholar
  2. 2.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Computer Graphics Proc. SIGGRAPH’99, pp. 187–194 (1999)Google Scholar
  3. 3.
    Breuer, P., Kim, K.I., Kienzle, W., Schölkopf, B., Blanz, V.: Automatic 3d face reconstruction from single images or video. In: FG’08 (2008)Google Scholar
  4. 4.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR’01 (2001)Google Scholar
  5. 5.
    Erukhimov, V., Lee, K.C.: A bottom-up framework for robust facial feature detection. In: FG’08 (2008)Google Scholar
  6. 6.
    Nguyen, M.H., Perez, J., la Torre Frade, F.D.: Facial feature detection with optimal pixel reduction svms. In: FG’08 (2008)Google Scholar
  7. 7.
    Zuo, F., de With, P.H.: Facial feature extraction using a cascade of model-based algorithms. In: AVSBS’05 (2005)Google Scholar
  8. 8.
    Tang, F., Wang, J., Tao, H., Peng, Q.: Probabilistic hierarchical face model for feature localization. In: WACV’07 (2007)Google Scholar
  9. 9.
    Wimmer, M., Mayer, C., Radig, B.: Robustly classifying facial components using a set of adjusted pixel features. In: FG’08 (2008)Google Scholar
  10. 10.
    Ardizzone, E., Cascia, M.L., Morana, M.: Probabilistic corner detection for facial feature extraction. In: Foggia, P., Sansone, C., Vento, M. (eds.) Image Analysis and Processing – ICIAP 2009. LNCS, vol. 5716, pp. 461–470. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kozakaya, T., Shibata, T., Yuasa, M., Yamaguchi, O.: Facial feature localization using weighted vector concentration approach. In: FG’08 (2008)Google Scholar
  12. 12.
    Oh, J.S., Kim, D.W., Kim, J.T., Yoon, Y.I., Choi, J.S.: Facial component detection for efficient facial characteristic point extraction. In: Kamel, M.S., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 1125–1132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Kim, D.H., Dahyot, R.: Face components detection using surf descriptors and svms. In: IMVIP’08 (2008)Google Scholar
  14. 14.
    Celiktutan, O., Akakin, H.C., Sankur, B.: Multi-attribute robust facial feature localization. In: FG’08 (2008)Google Scholar
  15. 15.
    Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 504–513. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Zuo, F., de With, P.: Fast facial feature extraction using a deformable shape model with haar-wavelet based local texture attributes. In: ICIP’04 (2004)Google Scholar
  17. 17.
    Cristinacce, D., Cootes, T.: Feature detection and tracking with constrained local models. In: BMVC’06 (2006)Google Scholar
  18. 18.
    Huang, J., Heisele, B., Blanz, V.: Component-based face recognition with 3d morphable models. In: Proc. of the 4th Int. Conf. on Audio- and Video-Based Biometric Person Authenticitation, Surrey, UK (2003)Google Scholar
  19. 19.
    Gu, L., Kanade, T.: 3d alignment of face in a single image. In: CVPR’06 (2006)Google Scholar
  20. 20.
    Romdhani, S., Vetter, T.: 3d probabilistic feature point model for object detection and recognition. In: CVPR’07 (2007)Google Scholar
  21. 21.
    Romdhani, S., Vetter, T.: Estimating 3d shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. In: CVPR’05 (2005)Google Scholar
  22. 22.
    Burger, W., Burge, M.J.: Digital Image Processing. Springer, New York (2008),
  23. 23.
    Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: CVPR’05 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pia Breuer
    • 1
  • Volker Blanz
    • 1
  1. 1.Institute for Vision and GraphicsUniversity of Siegen 

Personalised recommendations