Skip to main content

Design of a Fuzzy System for the Longitudinal Control of an F-14 Airplane

  • Chapter
Soft Computing for Intelligent Control and Mobile Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 318))

Abstract

In this paper we present a design of a fuzzy system for the longitudinal control of an F-14 airplane. The longitudinal control is carried out only by controlling the elevators of the airplane. To carry out such monitoring it is necessary to use the stick, the rate of elevation and the angle of attack. These 3 variables are input into the fuzzy inference system, which is of Mamdani type, and we obtain as output the value of the elevators. After designing the fuzzy inference system we turn to the simulation stage. Simulation results of the longitudinal control are obtained using a plant in Simulink and those results are compared against the PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abusleme, H., Angel, C.: Control difuso de un vehiculo volador no tripulado, Phd Thesis, Pontificia University of Chile (2000)

    Google Scholar 

  2. Blakelock, J.: Automatic Control of Aircraft and Missiles. Wiley, New York (1965)

    Google Scholar 

  3. Dorf, R.: Modern Control Systems. Addison-Wesley Pub. Co., Reading (1997)

    Google Scholar 

  4. Dwinnell, J.: Principles of Aerodynamics. McGraw-Hill Book Company, New York (1929)

    Google Scholar 

  5. Engelen, H., Babuska, R.: Fuzzy logic based full-envelope autonomous flight control for an atmospheric re-entry spacecraft Control Engineering Practice, vol. 11(1), pp. 11–25 (January 2003)

    Google Scholar 

  6. Federal Aviation Administration, Airplane Flying Handbook, Book (2007)

    Google Scholar 

  7. Federal Aviation Administration. Pilot’s Handbook of Aeronautical Knowledge, Book (2008)

    Google Scholar 

  8. Garcia, C.: ” Everything about airplane”. Paper (2009), http://los-aviones-y-su-his-toria.blogspot.com/2009/02/40-motor-de-combustion-interna-ano-1859.html

  9. Gardner, A.: U.S Warplanes The F-14 Tomcat, Book (2003)

    Google Scholar 

  10. Gibbens, P., Boyle, D.: Introductory Flight Mechanics and Performance. University of Sydney, Australia (1999)

    Google Scholar 

  11. Holmes, T.: US Navy F-14 Tomcat Units of Operation Iraqi Freedom, Book (2005)

    Google Scholar 

  12. Jamshidi, M., Vadiee, N., Ross, T.: Fuzzy Logic and Control: Software and Hardware Applications, vol. 2. University of New Mexico

    Google Scholar 

  13. Kadmiry, B., Driankov, D.: A fuzzy flight controller combining linguistic and model-based fuzzy control. Fuzzy Sets and Systems 146(3), 313–347 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Keviczky, T., Balas, G.: Receding horizon control of an F-16 aircraft: A comparative study. Control Engineering Practice 14(9), 1023–1033 (2006)

    Article  Google Scholar 

  15. Liu, M., Naadimuthu, G., Lee, E.S.: Trayectory tracking in aircraft landind operations management using the adaptive neural fuzzy inference system. Computers & Mathematics with Applications 56(5), 1322–1327 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. McLean, D.: Automatic Flight Control System, Book, Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  17. McRuer, D., Ashkenas, I., Graham, D.: Aircraft Dynamics and Automatic Control. Princeton University Press, Princeton (1973)

    Google Scholar 

  18. Morelli, E.A.: Global Nonlinear Parametric Modeling with Application to F-16 Aero-dynamics, NASA Langley Research Center, Hampton, Virginia (1995)

    Google Scholar 

  19. Nelson, R.: Flight Stability and automatic control. Department of Aerospace and Mechanical Engineering, University of Notre Dame, 2nd edn. McGraw Hill, New York (1998)

    Google Scholar 

  20. Rachman, E., Jaam, J., Hasnah, A.: Non-linear simulation of controller for longitudinal control augmentation system of F-16 using numerical approach Information Sciences, vol. 164(1-4), pp. 47–60 (August 2, 2004)

    Google Scholar 

  21. Reiner, J., Balas, G., Garrard, W.: Flight control design using robust dynamic inversion and time-scale separation. Automatic 32(11), 1493–1504 (1996)

    Article  MATH  Google Scholar 

  22. Sanchez, E., Becerra, H., Velez, C.: Combining fuzzy, PID and regulation control for an autonomous mini-helicopter. Information Sciences 177(10), 1999–2022 (2007)

    Article  Google Scholar 

  23. Sefer, K., Omer, C., Okyay, K.: Adaptive neuro-fuzzy inference system based autono-mous flight control of unmanned air vehicles. Expert Systems with Applications In Press, Corrected Proof (June 2009)

    Google Scholar 

  24. Song, Y., Wang, H.: Design of Flight Control System for a Small Unmanned Tilt. Rotor Aircraft Chinese Journal of Aeronautics, vol. 22(3), pp. 250–256 (2009)

    Google Scholar 

  25. Walker, D.J.: Multivariable control of the longitudinal and lateral dynamics of a fly-by-wire helicopter. Control Engineering Practice 11(7), 781–795 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cervantes, L., Castillo, O. (2010). Design of a Fuzzy System for the Longitudinal Control of an F-14 Airplane. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Intelligent Control and Mobile Robotics. Studies in Computational Intelligence, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15534-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15534-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15533-8

  • Online ISBN: 978-3-642-15534-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics