Skip to main content

Airborne measurements of spectral shortwave radiation in cloud and aerosol remote sensing and energy budget studies

  • Chapter
  • First Online:
Light Scattering Reviews, Vol. 6

Abstract

Space-borne observations of clouds and aerosols are currently undergoing important developments. A new generation of passive imagers follows in the footsteps of proven instrumentation akin to AVHRR (Advanced Very High Resolution Radiometer: Cracknell, 1997) and MODIS (Moderate Resolution Imaging Spectroradiometer: King et al., 1992). At the same time, novel approaches are diversifying the instrumental infrastructure and thus extending the observable parameter space: radar and lidar explore the vertical distribution of clouds and aerosols; polarimeters help untangle aerosols and clouds, and complement non-polarized imagery for ice and mixed-phase clouds. Curiously, the spectral information in the shortwave (solar) wavelength range has remained largely underutilized for cloud and aerosol remote sensing, whereas the infrared and microwave spectral ranges are extensively used for sounding techniques - particularly for water vapor. Solar spectral imagers such as AVIRIS (Airborne Visible/InfraRed Imaging Spectrometer) are routinely flown in geological surveys, recently in the aftermath of the May 2010 Gulf of Mexico oil spill (Clark et al., 2010). Ecosystem mapping (Pignatti et al., 2009) and ocean color retrievals (Liew and Kwoh, 2003) with Hyperion onboard the NASA satellite EO-1 are examples of space-borne spectral cartography in biology and ocean chemistry. In all of these applications, the atmosphere between the surface and the sensor is a factor that needs to be removed via correction algorithms. The spectral signal from the atmosphere itself is mainly used for fingerprinting trace gases based on differential optical absorption spectroscopy. In addition to gas-phase spectroscopy, the European Space Agency℉s SCIAMACHY (scanning imaging absorption spectrometer for atmospheric cartography) on ENVISAT and GOME (global ozone monitoring experiment) on ERS-2 provide limited information about aerosols and clouds, which introduce biases in trace gas retrievals due to enhanced scattering and absorption or spatial heterogeneity effects (Wagner et al., 2008). However, derived parameters such as the absorbing and scattering aerosol indices (de Graaf and Stammes, 2005; Penning de Vries et al., 2009) or effective cloud fraction (Grzegorski et al., 2006) remain somewhat quantitative or are limited to certain wavelength bands with strong gas absorption lines (Koelemeijer et al., 2002) or Fraunhofer lines (Ring effect, Joiner and Bhartia, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, S. A., and S. K. Cox, 1981: Aircraft observations of shortwave fractional Albedo of non-homogeneous clouds, J. Appl. Meteorol., 20, 1510–1515.

    Article  ADS  Google Scholar 

  • Arking, A., and J. D. Childs, 1985: Retrieval of cloud cover parameters from multispectral satellite images, J. Appl. Meteorol., 24, 323–333.

    Google Scholar 

  • Bannehr, L., and R. Schwiesow, 1993: A technique to account for the misalignment of pyranometers installed on aircraft, J. Atmos. Oceanic Technol., 10, 774–777.

    Article  ADS  Google Scholar 

  • Baran, A. J., and L.-C. Labonnote, 2007: A self consistent scattering model for cirrus. I: The solar region, Q. J. R. Meteorol. Soc., 133, 1899-1912.

    Article  Google Scholar 

  • Baum, B.A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds, J. Appl. Meteorol. and Climatology, 50, 1037–1056.

    Article  ADS  Google Scholar 

  • Bergstrom, R. W., P. Pilewskie, B. Schmid, and P. B. Russell, 2003: Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000, J. Geophys. Res., 108(D13), 8474, doi:10.1029/2002JD002435.

    Article  Google Scholar 

  • Bergstrom, R. W., P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, 2007: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, doi:10.5194/acp-7-5937-2007.

    Article  ADS  Google Scholar 

  • Bergstrom, R. W., K. S. Schmidt, O. Coddington, P. Pilewskie, H. Guan, J. M. Livingston, J. Redemann, and P. B. Russell, 2010: Aerosol spectral absorption in the Mexico City area: results from airborne measurements during MILAGRO/INTEX B, Atmos. Chem. Phys., 10, 6333–6343, doi:10.5194/acp-10-6333-2010.

    Article  ADS  Google Scholar 

  • Cess, R. D., M. H. Zhang, P. Minnis, L. Corsetti, E. G. Dutton, B. W. Forgan, D. P. Garber, W. L. Gates, J. J. Hack, E. F. Harrison, X. Jing, J. T. Kiehl, C. N. Long, J. J. Morcrette, G. L. Potter, V. Ramanathan, B. Subasilar, C. H. Whitlock, D. F. Yound, and Y. Zhou, 1995: Absorption of solar radiation by clouds: Observations versus models, Science, 267, 496–499.

    Article  ADS  Google Scholar 

  • Charlson, R. J., A. S. Ackerman, F. A. M. Bender, T. L. Anderson, and Z. Liu, 2007: On the climate forcing consequences of the albedo continuum between cloudy and clear air, Tellus, Ser. B, 59, 715–727.

    Article  ADS  Google Scholar 

  • Chiu, J. C., A. Marshak, Y. Knyazikhin, P. Pilewskie, and W. J. Wiscombe, 2009: Physical interpretation of the spectral radiative signature in the transition zone between cloudfree and cloudy regions, Atmos. Chem. Phys., 9, 1419–1430, doi:10.5194/acp-9-1419-2009.

    Article  ADS  Google Scholar 

  • Chiu, J. C., A. Marshak, Y. Knyazikhin, and W. J. Wiscombe, 2010: Spectrally-invariant behavior of zenith radiance around cloud edges simulated by radiative transfer, Atmos. Chem. Phys., 10, 11295–11303, doi:10.5194/acp-10-11295-2010.

    Article  ADS  Google Scholar 

  • Chylek, P., S. Robinson, M. K. Dubey, M. D. King, Q. Fu, and W. B. Clodius, 2006: Comparison of near-infrared and thermal infrared cloud phase detections, J. Geophys. Res., 111, D20203, doi:10.1029/2006JD007140.

    Article  ADS  Google Scholar 

  • Clark, R.N., G. A. Swayze, I. Leifer, K. E. Livo, R. Kokaly, T. Hoefen, S. Lundeen, M. Eastwood, R. O. Green, N. Pearson, C. Sarture, I. McCubbin, D. Roberts, E. Bradley, D. Steele, T. Ryan, R. Dominguez et al., 2010: A method for quantitative mapping of thick oil spills using imaging spectroscopy, U.S. Geological Survey Open-File Report 2010–1167, 51 pp.

    Google Scholar 

  • Coddington, O., K. S. Schmidt, P. Pilewskie, W. J. Gore, R. W. Bergstrom, M. Roman, J. Redemann, P. B. Russell, J. Liu, and C. C. Schaaf, 2008: Aircraft measurements of spectral surface albedo and its consistency with ground-based and space-borne observations, J. Geophys. Res., 113, D17209, doi:10.1029/2008JD010089.

    Article  ADS  Google Scholar 

  • Coddington, O. M., P. Pilewskie, J. Redemann, S. Platnick, P. B. Russell, K. S. Schmidt, W. J. Gore, J. Livingston, G. Wind, and T. Vukicevic, 2010: Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing, J. Geophys. Res., 115, D10211, doi:10.1029/2009JD012829.

    Article  ADS  Google Scholar 

  • Cracknell, A. P., 1997: The Advanced Very High Resolution Radiometer, Taylor & Francis, London.

    Google Scholar 

  • Davis, A. B., and A. Marshak, 2010: Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts, Rep. Prog. Phys., 73 (1010), 70 pp., doi:10.1088/0034-4885/73/2/026801.

    Google Scholar 

  • de Graaf, M., and P. Stammes, 2005: SCIAMACHY Absorbing Aerosol Index - calibration issues and global results from 2002–2004, Atmos. Chem. Phys., 5, 2385–2394, doi:10.5194/acp-5-2385-2005.

    Article  ADS  Google Scholar 

  • Ehrlich, A., E. Bierwirth, M. Wendisch, J.-F. Gayet, G. Mioche, A. Lampert, and J. Heintzenberg, 2008: Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: Test of three approaches, Atmos. Chem. Phys., 8, 7493–7505.

    Article  ADS  Google Scholar 

  • Ehrlich, A., M. Wendisch, E. Bierwirth, J.-F. Gayet, G. Mioche, A. Lampert, and B. Mayer, 2009: Evidence of ice crystals at cloud top of Arctic boundary-layer mixedphase clouds derived from airborne remote sensing, Atmos. Chem. Phys., 9, 9401–9416, doi:10.5194/acp-9-9401-2009.

    Article  ADS  Google Scholar 

  • Gayet, J.-F., I. S. Stachlewska, O. Jourdan, V. Shcherbakov, A. Schwarzenboeck, and R. Neuber, 2007: Microphysical and optical properties of precipitating drizzle and ice particles obtained from alternated Lidar and in situ measurements, Ann. Geophys., 25, 1487–1497.

    Article  ADS  Google Scholar 

  • Green, R. O., and B. Pavri, 2000: AVIRIS in-flight calibration experiment, sensitivity analysis, and intraflight stability, Proceedings of the Ninth JPL Airborne Earth Science Workshop, R. Green (ed.), Pasadena, CA.

    Google Scholar 

  • Green, R. O., M. L. Eastwood, and C. M. Sarture, 1998: Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), Remote Sens. Environ., 65: (3) 227–248.

    Article  Google Scholar 

  • Grzegorski, M., M. Wenig, U. Platt, P. Stammes, N. Fournier, and T. Wagner, 2006: The Heidelberg iterative cloud retrieval utilities (HICRU) and its application to GOME data, Atmos. Chem. Phys., 6, 4461–4476, doi:10.5194/acp-6-4461-2006.

    Article  ADS  Google Scholar 

  • Harrison, L., J. Michalsky, and J. Berndt, 1994: Automated multifilter rotating shadowband radiometer: an instrument for optical depth and radiation measurements, Appl. Optics, 33, 5118–5125.

    Article  ADS  Google Scholar 

  • Haywood, J. M., S. R. Osborne, and S. J. Abel, 2004: The effect of overlying absorbing aerosol layers on remote sensing retrievals of cloud effective radius and cloud optical depth, Q. J. R. Meteorol. Soc., 130, 779–800.

    Article  ADS  Google Scholar 

  • Holben B.N., T.F. Eck, I. Slutsker, D. TanrĂ©, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, 1998: AERONET - A federated instrument network and data archive for aerosol characterization, Rem. Sens. Environ., 66, 1–16.

    Article  Google Scholar 

  • Hook, S. J., K. J. Thome, M. Fitzgerald, and A. B. Kahle, 2001: The MODIS/ASTER airborne simulator (MASTER)—A new instrument for earth science studies, Remote Sens. Environ., 76, 93–102, doi:10.1016/ S0034-4257(00)00195-4.

    Article  Google Scholar 

  • Jiang, H., and G. Feingold, 2006: Effect of aerosol on warm convective clouds: Aerosolcloud-surface flux feedbacks in a new coupled large eddy model, J. Geophys. Res., 111, D01202, doi:10.1029/2005JD006138.

    Article  Google Scholar 

  • Jiang, H., G. Feingold, H. H. Jonsson, M.-L. Lu, P. Y. Chuang, R. C. Flagan, and J. H. Seinfeld, 2008: Statistical comparison of properties of simulated and observed cumulus clouds in the vicinity of Houston during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), J. Geophys. Res., 113, D13205, doi:10.1029/2007JD009304.

    Article  ADS  Google Scholar 

  • Joiner, J. and P. K. Bhartia, 1995: The determination of cloud pressures from rotational Raman scattering in satellite backscatter ultraviolet measurements, J. Geophys. Res., 100, 23019–23026.

    Article  ADS  Google Scholar 

  • Kalesse, H., K. S. Schmidt, R. Buras, M. Wendisch, B. Mayer, P. Pilewskie, M. King, L. Tian, G. Heymsfield, S. Platnick, 2011: The impact of crystal shape and spatial variability on the remote sensing of ice cloud optical thickness and effective radius - a TC4 case study, submitted to J. Geophys. Res.

    Google Scholar 

  • Kindel, B. C., K. S. Schmidt, P. Pilewskie, B. A. Baum, P. Yang, and S. Platnick, 2010: Observations and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J18, doi:10.1029/2009JD013127.

    Article  Google Scholar 

  • Kindel, B.C., 2010: Cloud shortwave spectral radiative properties: Airborne hyperspectral measurements and modeling of irradiance, Ph.D. thesis, University of Colorado.

    Google Scholar 

  • Kindel, B.C., P. Pilewskie, K. S. Schmidt, O. Coddington, 2011: Spectral absorption of marine stratus clouds: Measurements and modeling, under review, J. Geophys. Res.

    Google Scholar 

  • King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanre, 1992: Remote- sensing of cloud, aerosol, and water-vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS), IEEE Trans. Geosci. Remote Sens., 30, 2–27.

    Article  ADS  Google Scholar 

  • King, M. D, W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S. C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, and F. G. Osterwisch, 1996: Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor and surface properties, J. Atmos. Oceanic Technol., 13, 777–794.

    Article  ADS  Google Scholar 

  • King, M. D., S. Platnick, G. Wind, G. T. Arnold, and R. T. Dominguez, 2010: Remote sensing of radiative and microphysical properties of clouds during TC4: Results from MAS, MASTER, MODIS, and MISR, J. Geophys. Res., 115, D00J07, doi:10.1029/2009JD013277.

    Article  Google Scholar 

  • Knap, H. W., P. Stammes, and R. B. A. Koelemeijer, 2002: Cloud thermodynamic-phase determination from near-infrared spectra of reflected sunlight, J. Atmos. Sci., 59, 83–96.

    Article  ADS  Google Scholar 

  • Koelemeijer, R. B. A., P. Stammes, J. W. Hovenier, and J. F. de Haan, 2002: Global distributions of effective cloud fraction and cloud top pressure derived from oxygen A band spectra measured by the Global Ozone Monitoring Experiment: Comparison to ISCCP data, J. Geophys. Res., 10 (D12), 4151, 10.1029/2001JD000840.

    Article  Google Scholar 

  • Kokhanovsky, A. A., O. Jourdan, and J. P. Burrows, 2006: The cloud phase discrimination from a satellite, IEEE Geosci. Rem. Sens. Lett., 3, 103–106.

    Article  ADS  Google Scholar 

  • Kokhanovsky, A. A., S. Platnick, and M.D. King, 2011: Remote sensing of terrestrial clouds from space using backscattering and thermal emission techniques, in The Remote Sensing of Tropospheric Composition from Space, J. P. Burrows et al. (eds.), Physics of Earth and Space Environments.

    Google Scholar 

  • Koren, I., L. A. Remer, Y. J. Kaufman, Y. Rudich, and J. V. Martins, 2007: On the twilight zone between clouds and aerosols, Geophys. Res. Lett., 34, L08805, doi:10.1029/2007GL029253.

    Article  Google Scholar 

  • Koren, I., L. Oreopoulos, G. Feingold, L. A. Remer, and O. Altaratz, 2008: How small is a small cloud?, Atmos. Chem. Phys., 8, 3855–3864, doi:10.5194/acp-8-3855-2008.

    Article  ADS  Google Scholar 

  • Kylling, A., A. R. Webb, R. Kift, G. P. Gobbi, L. Ammannato, F. Barnaba, A. Bais, S. Kazadzis, M. Wendisch, E. Jäkel, S. Schmidt, A. Kniffka, S. Thiel, W. Junkermann, M. Blumthaler, R. Silbernagl, B. Schallart, R. Schmitt, B. Kjeldstad, T. M. Thorseth, R. Scheirer, and B. Mayer, 2005: Spectral actinic flux in the lower troposphere: measurement and 1D simulations for cloudless, broken cloud and overcast situations. Atmos. Chem. Phys., 5, 1975–1997.

    Article  ADS  Google Scholar 

  • Li, L., G. M. Heymsfield, P. E. Racette, L. Tian, and E. Zenker, 2004: A 94 GHz cloud radar system on a NASA high-altitude ER-2 aircraft, J. Atmos. Ocean. Technol., 21, 1378–1388.

    Article  ADS  Google Scholar 

  • Liew, S.C., and L. K. Kwoh, 2003: Mapping optical parameters of coastal sea waters using the Hyperion Imaging Spectrometer: intercomparison with MODIS ocean color products, Geoscience and Remote Sensing Symposium Proceedings, IEEE International, vol. 1, 549–551, doi: 10.1109/IGARSS.2003.1293838

    Google Scholar 

  • Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the Earth℉s radiant energy system instrument on the Terra satellite. part I: Methodology, J. Atmos. Oceanic Technol., 22, 338–351.

    Article  ADS  Google Scholar 

  • Lu, M.-L., G. Feingold, H. H. Jonsson, P. Y. Chuang, H. Gates, R. C. Flagan, and J. H. Seinfeld, 2008: Aerosol-cloud relationships in continental shallow cumulus, J. Geophys. Res., 113, D15201, doi:10.1029/2007JD009354.

    Article  ADS  Google Scholar 

  • Marshak, A., W. Wiscombe, A. Davis, L. Oreopoulos, and R. Cahalan, 1999: On the removal of the effect of horizontal fluxes in two-aircraft measurements of cloud absorption, Q. J. R. Meteorol. Soc., 125, 2153–2170, doi:10.1002/qj.49712555811.

    Article  ADS  Google Scholar 

  • Marshak, A., Y. Knyazikhin, K. D. Evans, and W. J. Wiscombe, 2004: The RED versus NIR plane to retrieve broken-cloud optical depth from ground-based measurements, J. Atmos. Sci., 61 (15), 1911–1925.

    Article  ADS  Google Scholar 

  • Marshak, A., G. Wen, J. A. Coakley Jr., L. A. Remer, N. G. Loeb, and R. F. Cahalan, 2008: A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds, J. Geophys. Res., 113, D14S17, doi:10.1029/2007JD009196.

    Article  Google Scholar 

  • Marshak, A., Y. Knyazikhin, J. C. Chiu, and W. J. Wiscombe, 2009: Spectral invariant behavior of zenith radiance around cloud edges observed by ARM SWS, Geophys. Res. Lett., 36, L16802, doi:10.1029/2009GL039366.

    Article  ADS  Google Scholar 

  • Mayer, B., 2009: Radiative transfer in the cloudy atmosphere, Euro. Phys. J. Conf., 1, 75–99, doi:10.1140/epjconf/e2009-00912-1.

    Google Scholar 

  • Mayer, B., and A. Kylling, 2005: Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, doi:10.5194/acp-5-1855-2005.

    Article  ADS  Google Scholar 

  • McBride, P. J., K. S. Schmidt, P. Pilewskie, S. Lance, P. Minnis, K. M. Bedka, D. E. Wolfe, 2010: Cloud property retrievals from surface spectral transmittance and airborne spectral reflectance: Comparisons with satellite, microwave, and in situ observations during CalNex, Presentation during fall meeting of the American Geophysical Union; San Francisco, December 2010.

    Google Scholar 

  • McBride, P. J., P. Pilewskie, K. S. Schmidt, S. Kittelman, and D. Wolfe, 2011: A spectral method for retrieving cloud optical thickness and effective radius from surfacebased transmittance measurements, Atmos. Chem. Phys. Discuss., 11, 1053–1104, doi:10.5194/acpd-11-1053.

    Article  ADS  Google Scholar 

  • McFarlane, S. A., R. T. Marchand, and T. P. Ackerman, 2005: Retrieval of cloud phase and crystal habit from Multiangle Imaging Spectroradiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, J. Geophys. Res., 110, D14201, doi:10.1029/2004JD004831.

    Article  ADS  Google Scholar 

  • McGill, M. J., L. Li, W. D. Hart, G. M. Heymsfield, D. L. Hlavka, P. E. Racette, L. Tian, M. A. Vaughan, and D. M. Winker, 2004: Combined lidar-radar remote sensing: Initial results from CRYSTAL-FACE, J. Geophys. Res., 109, D07203, doi:10.1029/2003JD004030.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102(D14), 16,630–16,682.

    Article  Google Scholar 

  • Molina, L. T., S. Madronich, J. S. Gaffney, E. Apel, B. de Foy, J. Fast, R. Ferrare, S. Herndon, J. L. Jimenez, B. Lamb, A. R. Osornio-Vargas, P. Russell, J. J. Schauer, P. S. Stevens, R. Volkamer, and M. Zavala, 2010: An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation, Atmos. Chem. Phys., 10, 8697–8760, doi:10.5194/acp-10-8697-2010.

    Article  ADS  Google Scholar 

  • Nakajima, T., and M. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory, J. Atmos. Sci., 47, 1878–1893.

    Article  ADS  Google Scholar 

  • Penning de Vries, M. J. M., S. Beirle, and T. Wagner, 2009: UV Aerosol Indices from SCIAMACHY: introducing the SCattering Index (SCI), Atmos. Chem. Phys., 9, 9555–9567, doi:10.5194/acp-9-9555-2009.

    Article  ADS  Google Scholar 

  • Pignatti, S., R. M. Cavalli, V. Cuomo, L. Fusilli, S. Pascucci, and M. Poscolieri, 2009: Evaluating Hyperion capability for land cover mapping in a fragmented ecosystem: Pollino National Park, Italy, Remote Sens. Env., 113, 622–634.

    Article  Google Scholar 

  • Pilewskie, P., and S. Twomey, 1987: Discrimination of ice from water in clouds by optical remote sensing, Atmos. Res., 21, 113–122.

    Article  Google Scholar 

  • Pilewskie, P., J. Pommier, R. Bergstrom, W. Gore, S. Howard, M. Rabbette, B. Schmid, P. V. Hobbs, and S. C. Tsay, 2003: Solar spectral radiative forcing during the Southern African Regional Science Initiative, J. Geophys. Res., 108(D13), 8486, doi:10.1029/2002JD002411.

    Article  Google Scholar 

  • Platnick, S., 2000: Vertical photon transport in cloud remote sensing problems, J. Geophys. Res., 105, 22,919–22,935, doi:10.1029/ 2000JD900333.

    Article  ADS  Google Scholar 

  • Platnick, S., 2001: Approximations for horizontal photon transport in cloud remote sensing problems, J. Quant. Spectrosc. Radiat. Transfer, 68, 75–99, doi:10.1016/S0022-4073(00)00016-9.

    Article  ADS  Google Scholar 

  • Platt, U., and J. Stutz, 2008: Differential Optical Absorption Spectroscopy, Principles and Applications, Physics of Earth and Space Environments, Springer, Berlin.

    Google Scholar 

  • Rabbette, M., and P. Pilewskie, 2002: Principal component analysis of Arctic solar irradiance spectra, J. Geophys. Res., 107(C10), 8049, doi:10.1029/2000JC000566.

    Article  ADS  Google Scholar 

  • Redemann, J., P. Pilewskie, P. B. Russell, J. M. Livingston, S. Howard, B. Schmid, J. Pommier, W. Gore, J. Eilers, and M. Wendisch, 2006: Airborne measurements of spectral direct aerosol radiative forcing in the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution, 2004, J. Geophys. Res., 111, D14210, doi:10.1029/2005JD006812.

    Article  ADS  Google Scholar 

  • Rothman, L., et al., 2005: The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 96, 139–204, doi:10.1016/j.jqsrt.2004.10.008.

    Article  ADS  Google Scholar 

  • Russell, P. B., J. M. Livingston, P. Hignett, S. Kinne, J. Wong, A. Chien, R. Bergstrom, and P. V. Hobbs, 1999: Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from Sunphotometer and in situ data with those measured by airborne pyranometer, J. Geophys. Res., 104(D2), 2289–2307.

    Article  ADS  Google Scholar 

  • Russell, P. B., R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, 2010: Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition, Atmos. Chem. Phys., 10, 1155–1169, doi:10.5194/acp-10-1155-2010.

    Article  ADS  Google Scholar 

  • Schmidt, K. S., V. Venema, F. Di Giuseppe, R. Scheirer, M. Wendisch, and P. Pilewskie, 2007: Reproducing cloud microphysical and irradiance measurements using three 3D cloud generators, Q. J. R. Meteorol. Soc., 133, 765–780.

    Article  ADS  Google Scholar 

  • Schmidt, K. S., G. Feingold, P. Pilewskie, H. Jiang, O. Coddington, and M. Wendisch, 2009: Irradiance in polluted cumulus fields: Measured and modeled cloud-aerosol effects, Geophys. Res. Lett., 36, L07804, doi:10.1029/2008GL036848.

    Article  Google Scholar 

  • Schmidt, K. S., P. Pilewskie, R. Bergstrom, O. Coddington, J. Redemann, J. Livingston, P. Russell, E. Bierwirth, M. Wendisch, W. Gore, M. K. Dubey, and C. Mazzoleni, 2010a: A new method for deriving aerosol solar radiative forcing and its first application within MILAGRO/INTEX-B, Atmos. Chem. Phys., 10, 7829–7843, doi:10.5194/acp-10-7829-2010.

    Article  ADS  Google Scholar 

  • Schmidt, K. S., P. Pilewskie, B. Mayer, M. Wendisch, B. Kindel, S. Platnick, M. D. King, G. Wind, G. T. Arnold, L. Tian, G. Heymsfield, and H. Kalesse, 2010b: Apparent absorption of solar spectral irradiance in heterogeneous ice clouds, J. Geophys. Res., 115, D00J22, doi:10.1029/2009JD013124.

    Article  Google Scholar 

  • Shannon, C., and W. Weaver, 1949: The mathematical theory of communication, University of Illinois, Urbana.

    MATH  Google Scholar 

  • Twomey, S., and T. Cocks, 1989: Remote sensing of cloud parameters from spectral reflectance in the near-infrared, Beitr. Phys. Atmos., 62, 172–179.

    Google Scholar 

  • Venema, V., S. Meyer, S. G. Garcia, A. Kniffka, C. Simmer, S. Crewell, U. Löhnert, T. Trautmann, and A. Macke, 2006: Surrogate cloud fields generated with the iterative amplitude adapted Fourier transform algorithm. Tellus, 58B, 104–120.

    Google Scholar 

  • Vukicevic, T., O. Coddington, and P. Pilewskie, 2010: Characterizing the retrieval of cloud properties from optical remote sensing, J. Geophys. Res., 115, D20211, doi:10.1029/2009JD012830.

    Article  ADS  Google Scholar 

  • Wagner, T., S. Beirle, T. Deutschmann, E. Eigemeier, C. Frankenberg, M. Grzegorski, C. Liu, T. Marbach, U. Platt, and M. Penning de Vries, 2008: Monitoring of atmospheric trace gases, clouds, aerosols and surface properties from UV/vis/NIR satellite instruments, J. Opt. A: Pure Appl. Opt., 10, 104019 doi: 10.1088/1464-4258/10/10/104019.

    Article  ADS  Google Scholar 

  • Wen, G., A. Marshak, R. F. Cahalan, L. A. Remer, and R. G. Kleidman, 2007: 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields, J. Geophys. Res., 112, D13204, doi:10.1029/2006JD008267.

    Article  ADS  Google Scholar 

  • Wendisch, M., D. MĂĽller, D. Schell, and J. Heintzenberg, 2001: An airborne spectral albedometer with active horizontal stabilization, J. Atmos. Oceanic Technol., 18, 1856–1866.

    Article  ADS  Google Scholar 

  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: the importance of mesoscale cellular convection, J. Climate, 19(9), 1748–1764.

    Article  ADS  Google Scholar 

  • Yang, P., L. Zhang, S. L. Nasiri, B. A. Baum, H.-L., Huang, M. D. King, and S. Platnick, 2007: Differences between collection 4 and 5 MODIS ice cloud optical/microphysical products and their impact on radiative forcing simulations, IEEE Transactions on Geoscience and Remote Sensing, 45, 2886–2899.

    Article  ADS  Google Scholar 

  • Yoshida, Y., and Asano, S., 2005: Effects of the vertical profiles of cloud droplets and ice particles on the visible and near-infrared radiative properties of mixed-phase stratocumulus clouds, J. Meteor. Soc. Japan, 83, 471–480.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, S., Pilewskie, P. (2012). Airborne measurements of spectral shortwave radiation in cloud and aerosol remote sensing and energy budget studies. In: Kokhanovsky, A. (eds) Light Scattering Reviews, Vol. 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15531-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15531-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15530-7

  • Online ISBN: 978-3-642-15531-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics