Skip to main content

Construction of 2-(Aminomethyl)indoles Through Copper-Catalyzed Domino Three-Component Coupling and Cyclization

  • Chapter
  • First Online:
  • 606 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A direct approach to 2-(aminomethyl)indoles by copper-catalyzed domino three-component coupling–cyclization of 2-ethynylanilines with a secondary amine and aldehyde has been developed. By use of a cyclic or acyclic secondary amine and aldehyde (paraformaldehyde, aliphatic or aromatic aldehydes) in the presence of 1 mol.% CuBr, 2-ethynylanilines were converted to a variety of substituted 2-(aminomethyl)indoles in good to excellent yields. Utilizing this domino reaction and C–H functionalization at the indole C-3 position, polycyclic indoles were readily synthesized. Construction of benzo[e][1,2]thiazine and indene motifs by the reaction of sulfonamide and malonate congeners is also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The author considered decreasing of the amount of amine component is important and economical especially when using more valuable amines such as 11 (Scheme 4).

  2. 2.

    When benzylamine was used instead of a secondary amine, dimeric compound 18 was produced in 82% yield (100 °C, 3 h, then reflux, 1 h).

  3. 3.

    When acetone was used instead of an aldehyde, Mannich-type reaction did not proceed and compound 19 was produced.

References

  1. Gommermann N, Koradin C, Polborn K, Knochel P (2003) Angew Chem Int Ed 42:5763–5766

    Article  CAS  Google Scholar 

  2. Gommerman N, Knochel P (2004) Chem Commun 2324–2325

    Google Scholar 

  3. Gommerman N, Knochel P (2005) Chem Commun 4175–4177

    Google Scholar 

  4. Knöpfel TF, Aschwanden P, Ichikawa T, Watanabe T, Carreira EM (2004) Angew Chem Int Ed 43:5971–5973

    Article  Google Scholar 

  5. Aschwanden P, Stephenson CRJ, Carreira EM (2006) Org Lett 8:2437–2440

    Article  CAS  Google Scholar 

  6. Espada A, Jiménez C, Debitus C, Riguera R (1993) Tetrahedron Lett 34:7773–7776

    Article  CAS  Google Scholar 

  7. Rashid MA, Gustafson KR, Boyd MRJ (2001) Nat Chem 64:1454–1456

    CAS  Google Scholar 

  8. Glennon RA, Grella B, Tyacke RJ, Lau A, Westaway J, Hudson AL (2004) Bioorg Med Chem Lett 14:999–1002

    Article  CAS  Google Scholar 

  9. Liu C, Masuno MN, MacMillan JB, Molinski TF (2004) Angew Chem Int Ed 43:5941–5945

    Google Scholar 

  10. Sonnenschein RN, Farias JJ, Tenney K, Mooberry SL, Lobkovsky E, Clardy J, Crews P (2004) Org Lett 6:779–782

    Article  CAS  Google Scholar 

  11. Kusama H, Takaya J, Iwasawa N (2002) J Am Chem Soc 124:11592–11593

    Article  CAS  Google Scholar 

  12. Bandini M, Melloni A, Piccinelli F, Sinisi R, Tommasi S, Umani-Ronchi A (2006) J Am Chem Soc 128:1424–1425

    Article  CAS  Google Scholar 

  13. Kuroda N, Takahashi Y, Yoshinaga K, Mukai C (2006) Org Lett 8:1843–1845

    Article  CAS  Google Scholar 

  14. Yasuhara A, Sakamoto T (1998) Tetrahedron Lett 39:595–596

    Article  CAS  Google Scholar 

  15. Lombardino JG, Wiesman EH (1971) J Med Chem 14:973–977

    Article  CAS  Google Scholar 

  16. Lombardino JG, Wiesman EH, McLamore WM (1971) J Med Chem 14:1171–1175

    Article  CAS  Google Scholar 

  17. Lombardino JG, Wiesman EH (1972) J Med Chem 15:848–849

    Article  CAS  Google Scholar 

  18. Zinnes H, Lindo NA, Sircar JC, Schwartz ML, Shavel J Jr (1973) J Med Chem 16:44–48

    Article  CAS  Google Scholar 

  19. Zinnes H, Sircar JC, Lindo N, Schwartz ML, Fabian AC, Shavel J Jr, Kasulanis CF, Genzer JD, Lutomski C, DiPasquale G (1982) J Med Chem 25:12–18

    Article  CAS  Google Scholar 

  20. Kwon S-K, Park M-S (1992) Arch Pharm Res 15:251–255

    Article  CAS  Google Scholar 

  21. Lazer ES, Miao CK, Cywin CL, Sorcek R, Wong H-C, Meng Z, Potocki I, Hoermann M, Snow RJ, Tschantz MA, Kelly TA, McNeil DW, Coutts SJ, Churchill L, Graham AG, David E, Grob PM, Engel W, Meier H, Trummlitz G (1997) J Med Chem 40:980–989

    Article  CAS  Google Scholar 

  22. Lee EB, Kwon SK, Kim SG (1999) Arch Pharm Res 22:44–47

    Article  CAS  Google Scholar 

  23. Watanabe H, Mao C-L, Barnish IT, Hauser CR (1969) J Org Chem 34:919–926

    Article  CAS  Google Scholar 

  24. Lombardino JG, Kuhla DE (1981) Adv Heterocycl Chem 28:73–126

    Article  CAS  Google Scholar 

  25. Motherwell WB, Pennell AMK (1991) J Chem Soc Chem Commun 877–879

    Google Scholar 

  26. Nemazanyi AG, Volovenko YM, Neshchadimenko VV, Babichev FS (1992) Chem Heterocycl Comp 28:220–222

    Article  Google Scholar 

  27. Manjarrez N, Pérez HI, Sorís A, Luna H (1996) Synth Commun 26:585–591

    Article  CAS  Google Scholar 

  28. Manjarrez N, Pérez HI, Sorís A, Luna H (1996) Synth Commun 26:1405–1410

    Article  CAS  Google Scholar 

  29. Takahashi M, Morimoto T, Isogai K, Tsuchiya S, Mizumoto K (2001) Heterocycles 55:1759–1769

    Article  CAS  Google Scholar 

  30. Layman WJ, Greenwood TD, Downey AL, Wolfe JF (2005) J Org Chem 70:9147–9155

    Article  CAS  Google Scholar 

  31. Vidal A, Madelmont J-C, Mounetou E (2006) Synthesis 591–593

    Google Scholar 

  32. Aliyenne AO, Kraïem J, Kacem Y, Hassine BB (2008) Tetrahedron Lett 49:1473–1475

    Article  Google Scholar 

  33. Zia-ur-Rehman M, Choudary JA, Elsegood MRJ, Siddiqui HL, Khan KM (2009) Eur J Med Chem 44:1311–1316

    Article  CAS  Google Scholar 

  34. Barange DK, Batchu VR, Gorja D, Pattabiraman VR, Tatini LK, Babu JM, Pal M (2007) Tetrahedron 63:1775–1789

    Article  CAS  Google Scholar 

  35. Barange DK, Nishad TC, Swamy NK, Bandameedi V, Kumar D, Sreekanth BR, Vyas K, Pal M (2007) J Org Chem 72:8547–8550

    Article  CAS  Google Scholar 

  36. Hatano M, Mikami K (2003) J Am Chem Soc 125:4704–4705

    Article  CAS  Google Scholar 

  37. Bressy C, Alberico D, Lautens M (2005) J Am Chem Soc 127:13148–13149

    Article  CAS  Google Scholar 

  38. Marchal E, Uriac P, Legouin B, Toupet L, van de Weghe P (2007) Tetrahedron 63:9979–9990

    Article  CAS  Google Scholar 

  39. Parmentier J-G, Poissonnet G, Goldstein S (2002) Heterocycles 57:465–476

    Article  CAS  Google Scholar 

  40. Costa M, Cá ND, Gabriele B, Massera C, Salerno G, Soliani M (2004) J Org Chem 69:2469–2477

    Article  CAS  Google Scholar 

  41. Sakai S, Annnaka K, Konakahara T (2006) J Org Chem 71:3653–3655

    Article  CAS  Google Scholar 

  42. Arcadi A, Bianchi G, Marinelli F (2004) Synthesis 610–618

    Google Scholar 

  43. Vlasov VM, Terekhova MI, Petrov ES, Sutula VD, Shatenshtein AI (1982) Zhurnal Organicheskoi Khimii 18:1672–1679

    CAS  Google Scholar 

  44. Larock RC, Fried CA (1990) J Am Chem Soc 112:5882–5884

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Ohta .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohta, Y. (2011). Construction of 2-(Aminomethyl)indoles Through Copper-Catalyzed Domino Three-Component Coupling and Cyclization. In: Copper-Catalyzed Multi-Component Reactions. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15473-7_2

Download citation

Publish with us

Policies and ethics