Skip to main content

Extracting Protein Sub-cellular Localizations from Literature

  • Conference paper
Active Media Technology (AMT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6335))

Included in the following conference series:

Abstract

Protein Sub-cellular Localization (PSL) prediction is an important task for predicting protein functions. Because the sequence-based approach used in the most previous work has focused on prediction of locations for given proteins, it failed to provide useful information for the cases in which single proteins are localized, depending on their states in progress, in several different sub-cellular locations. While it is difficult for the sequence-based approach, it can be tackled by the text-based approach.

The proposed approach extracts PSL from literature using Natural Language Processing techniques. We conducted experiments to see how our system performs in identification of evidence sentences and what linguistic features from sentences significantly contribute to the task. This article presents a text-based novel approach to extract PSL relations with their evidence sentences. Evidence sentences will provide indispensable pieces of information that the sequence-based approach cannot supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horton, P., Park, K.J., Obayashi, T., Nakai, K.: Protein Subcellular Localization Prediction with WoLF PSORT. In: Asia Pacific Bioinformatics Conference (APBC), pp. 39–48 (2006)

    Google Scholar 

  2. Stapley, B.J., Kelley, L., Sternberg, M.: Predicting the subcellular location of proteins from text using support vector machines. In: Pacic Symposium on Biocomputing, PSB (2002)

    Google Scholar 

  3. Brady, S., Shatkay, H.: EPILOC: A (Working) Text-Based System for Predicting Protein Subcellular Location. In: Pacific Symposium on Biocomputing, PSB (2008)

    Google Scholar 

  4. Kim, J.D., Ohta, T., Tsujii, J.: Corpus annotation for mining biomedical events from literature. BMC Bioinformatics 9(10) (2008)

    Google Scholar 

  5. Sim, J., Wright, C.C.: The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Physical Therapy 85(3), 206–282 (2005)

    Google Scholar 

  6. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berger, A.L., Della Pietra, S.A., Della Pietra, V.J.: A maximum entropy approach to natural language processing. Computational Linguistics 22(1), 39–71 (1996)

    Google Scholar 

  8. Tsujii Laboratory: ENJU Deep Syntactic Full Parser ver. 2.1., http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html/

  9. Tsujii Laboratory: GENIA Project, http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chun, HW., Kim, JD., Choi, YS., Sung, WK. (2010). Extracting Protein Sub-cellular Localizations from Literature. In: An, A., Lingras, P., Petty, S., Huang, R. (eds) Active Media Technology. AMT 2010. Lecture Notes in Computer Science, vol 6335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15470-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15470-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15469-0

  • Online ISBN: 978-3-642-15470-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics