Skip to main content

A Modified Particle Swarm Optimization Algorithm for the Best Low Multilinear Rank Approximation of Higher-Order Tensors

  • Conference paper
Swarm Intelligence (ANTS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6234))

Included in the following conference series:

Abstract

The multilinear rank of a tensor is one of the possible generalizations for the concept of matrix rank. In this paper, we are interested in finding the best low multilinear rank approximation of a given tensor. This problem has been formulated as an optimization problem over the Grassmann manifold [14] and it has been shown that the objective function presents multiple minima [15]. In order to investigate the landscape of this cost function, we propose an adaptation of the Particle Swarm Optimization algorithm (PSO). The Guaranteed Convergence PSO, proposed by van den Bergh in [23], is modified, including a gradient component, so as to search for optimal solutions over the Grassmann manifold. The operations involved in the PSO algorithm are redefined using concepts of differential geometry. We present some preliminary numerical experiments and we discuss the ability of the proposed method to address the multimodal aspects of the studied problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Appl. Math. 80(2), 199–220 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  3. Acar, E., Bingol, C.A., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy tensors. In: ISMB 2007 Conference Proceedings, Bioinformatics, vol. 23(13), pp. i10–i18 (2007)

    Google Scholar 

  4. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. on Optimization 17(1), 188–217 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brits, R., Engelbrecht, A., van den Bergh, F.: A niching particle swarm optimizer. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), vol. 2, pp. 692–696 (2002)

    Google Scholar 

  6. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R 1,R 2,...,R N ) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Lathauwer, L., Vandewalle, J.: Dimensionality reduction in higher-order signal processing and rank-(R 1,R 2,...,R N ) reduction in multilinear algebra. Linear Algebra Appl. 391, 31–55 (2004); Special Issue on Linear Algebra in Signal and Image Processing

    Google Scholar 

  9. Dreisigmeyer, D.W.: Direct search algorithms over Riemannian manifolds (December 2006) (optimization Online 2007-08-1742)

    Google Scholar 

  10. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. John Wiley & Sons, Chichester (2006)

    Google Scholar 

  12. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. Journal of Mathematical Physics 6(1), 164–189 (1927)

    Google Scholar 

  13. Hitchcock, F.L.: Multiple invariants and generalized rank of a p-way matrix or tensor. Journal of Mathematical Physics 7(1), 39–79 (1927)

    Google Scholar 

  14. Ishteva, M.: Numerical methods for the best low multilinear rank approximation of higher-order tensors. Ph.D. thesis, Department of Electrical Engineering, Katholieke Universiteit Leuven (December 2009)

    Google Scholar 

  15. Ishteva, M., Absil, P.-A., Van Huffel, S., De Lathauwer, L.: Tucker compression and local optima. Chemometr. Intell. Lab. Syst. (2010), doi:10.1016/j.chemolab.2010.06.006

    Google Scholar 

  16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995), http://dx.doi.org/10.1109/ICNN.1995.488968

  17. Kroonenberg, P.M.: Applied Multiway Data Analysis. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  18. Kroonenberg, P.M., de Leeuw, J.: Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika 45(1), 69–97 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, X., Srivastava, A., Gallivan, K.: Optimal linear representations of images for object recognition. IEEE Pattern Anal. and Mach. Intell. 26(5), 662–666 (2004), http://dx.doi.org/10.1109/TPAMI.2004.1273986

    Article  Google Scholar 

  20. McCullagh, P.: Tensor Methods in Statistics. Chapman and Hall, London (1987)

    MATH  Google Scholar 

  21. Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In: Gulliksen, H., Frederiksen, N. (eds.) Contributions to mathematical psychology, pp. 109–127. Holt, Rinehart & Winston (1964)

    Google Scholar 

  22. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  23. van den Bergh, F., Engelbrecht, A.P.: A new locally convergent particle swarm optimiser. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. pp. 96–101 (2002)

    Google Scholar 

  24. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear subspace analysis for image ensembles. In: Proc. Computer Vision and Pattern Recognition Conf. (CVPR 2003), Madison, WI, vol. 2, pp. 93–99 (2003)

    Google Scholar 

  25. Zhang, J., Zhang, J.R., Li, K.: A sequential niching technique for particle swarm optimization. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 390–399. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borckmans, P.B., Ishteva, M., Absil, PA. (2010). A Modified Particle Swarm Optimization Algorithm for the Best Low Multilinear Rank Approximation of Higher-Order Tensors . In: Dorigo, M., et al. Swarm Intelligence. ANTS 2010. Lecture Notes in Computer Science, vol 6234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15461-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15461-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15460-7

  • Online ISBN: 978-3-642-15461-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics