Skip to main content

Structure and Mechanical Properties of Bacteria Surfaces

  • Chapter
  • First Online:
Generic and Specific Roles of Saccharides at Cell and Bacteria Surfaces

Part of the book series: Springer Theses ((Springer Theses))

  • 477 Accesses

Abstract

In this chapter, model systems of bacteria surfaces, prepared from lipopolysaccharides (LPSs) of various structural complexities, are investigated using neutron scattering, high-energy X-ray reflectometry, and grazing-incidence X-ray fluorescence (GIXF). In particular, the influence of divalent cations on the conformation of LPSs and on the mechanics of LPS membranes is studied. As motivated in Chap.1, these effects are considered crucial for the resistance of Gram-negative bacteria against cationic antimicrobial peptides (CAPs), but experimental evidence on the molecular level is still missing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, 50 mM CaCl2 was used for the direct comparison to the MC simulations where a high calcium concentration was assumed. However, regarding the only small differences in structure and mechanical properties of interacting mutant LPS membrane multilayers found with 5 mM and 50 mM CaCl2 (see Sect. 6.1), much lower calcium concentrations are likely sufficient to induce the conformational changes observed here.

  2. 2.

    For X-rays, total reflection can only occur if the beam travels from a medium with lower electron density to a medium with higher electron density (see Sect. 2.2). In contrast to all commonly used solid substrate materials, the gas phase has a lower electron density than water.

  3. 3.

    The LPS Re molecules used for GIXOS experiments on the one hand and for X-ray fluorescence measurements on the other hand originate from different biological sources (from the strain F515 of E. coli. and from the strain R595 of Salmonella enterica sv. Minnesota, respectively, see Sect. 3.1.2). However, the ensuing small deviations of the electron density profile employed for X-ray fluorescence analysis have no significant influence on the data interpretation.

  4. 4.

    The number of electrons per LPS Re molecule in the headgroup slab (N = ρAd) is at the order of 1,000, while the numbers of electrons per K+ and Na+ differ only by 8. Considering the number of excess K+ ions per LPS Re molecule (N = 2.32) observed on Ca-free KCl buffer, the difference in electron density resulting from the different choice of monovalent salt can be neglected (<2%). On Ca50 KCl buffer, where there is only a very slight enrichment of monovalent ions in the headgroup slab, the effect is even weaker.

  5. 5.

    Beyond these qualitative predictions the continuum description is not employed here. Especially it should not be used for the microscopic description, as it loses its validity for the high charge densities and ion strengths at play (see Sect. 4.2). Moreover, this description does not take the z-extension of the charged saccharides and the volume occupied by the headgroups into account.

References

  1. S. Snyder, D. Kim, T.J. McIntosh, Lipopolysaccharide bilayer structure: effect of chemotype, core mutations, divalent cations, and temperature. Biochemistry 38, 10758 (1999)

    Article  CAS  Google Scholar 

  2. U. Seydel, M.H.J. Koch, K. Brandenburg, Structural polymorphisms of rough mutant lipopolysaccharides Rd to Ra from Salmonella minnesota. J. Struct. Biol. 110, 232 (1993)

    Article  CAS  Google Scholar 

  3. E.A. Evans, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14, 923 (1974)

    Article  CAS  Google Scholar 

  4. J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 72, 1525 (1976)

    Google Scholar 

  5. U. Seydel, M. Oikawa, K. Fukase, S. Kusumoto, K. Brandenburg, Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity. Eur. J. Biochem. 267, 3032 (2000)

    Article  CAS  Google Scholar 

  6. C.E. Miller, J. Majewski, T. Gog, T.L. Kuhl, Characterization of biological thin films at the solid-liquid interface by X-ray reflectivity. Phys. Rev. Lett. 94, 238104 (2005)

    Article  CAS  Google Scholar 

  7. E. Nováková, K. Giewekemeyer, T. Salditt, Structure of two-component lipid membranes on solid support: an x-ray reflectivity study. Phys. Rev. E 74, 051911 (2006)

    Article  Google Scholar 

  8. R.G. Oliveira et al., Physical mechanisms of bacterial survival revealed by combined grazing-incidence X-ray scattering and Monte Carlo simulation. Comptes Rendus Chimie 12, 209 (2009)

    Article  CAS  Google Scholar 

  9. D.A. Pink, L.T. Hansen, T.A. Gill, B.E. Quinn, M.H. Jericho, T.J. Beveridge, Divalent calcium ions inhibit the penetration of protamine through the polysaccharide brush of the outer membrane of Gram-negative bacteria. Langmuir 19, 8852 (2003)

    Article  CAS  Google Scholar 

  10. E. Schneck, E. Papp-Szabo, B.E. Quinn, O.V. Konovalov, T.J. Beveridge, D.A. Pink, M. Tanaka, Calcium ions induce collapse of charged O-side chains of lipopolysaccharides from pseudomonas aeruginosa. J. R. Soc. Interface 6, S671 (2009)

    Article  CAS  Google Scholar 

  11. V. Padmanabhan, J. Daillant, L. Belloni, Specific ion adsorption and short-range interactions at the air aqueous solution interface. Phys. Rev. Lett. 99, 086105 (2007)

    Article  Google Scholar 

  12. N.N. Novikova et al., X-ray fluorescence methods for investigations of lipid/protein membrane models. J. Synchrotron Rad. 12, 511 (2005)

    Article  CAS  Google Scholar 

  13. W. Bu, D. Vaknin, X-ray fluorescence spectroscopy from ions at charged vapor/water interfaces. J. Appl. Phys. 105, 084911 (2009)

    Article  Google Scholar 

  14. W.B. Yun, J.M. Bloch, X-ray near total external fluorescence method: experiment and analysis. J. Appl. Phys. 68, 1421 (1990)

    Article  CAS  Google Scholar 

  15. N.N. Novikova et al., Total reflection X-ray fluorescence study of Langmuir monolayers on water surface. J. Appl. Cryst. 36, 727 (2003)

    Article  CAS  Google Scholar 

  16. K. Kjaer, Some simple ideas on X-ray reflection and grazing-incidence diffraction from thin surfactant films. Phys. B 198, 100 (1994)

    Article  CAS  Google Scholar 

  17. K. Kjaer, J. Als-Nielsen, C.A. Helm, L.A. Laxhuber, H. Möhwald, Ordering in lipid monolayers studied by synchrotron X-ray-diffraction and fluorescence microscopy. Phys. Rev. Lett. 58, 2224 (1987)

    Article  CAS  Google Scholar 

  18. K. Kjaer, J. Als-Nielsen, C.A. Helm, P. Tippmankrayer, H. Mohwald, Synchrotron x-ray-diffraction and reflection studies of arachidic acid monolayers at the air-water-interface. J. Phys. Chem. 93, 3200 (1989)

    Article  CAS  Google Scholar 

  19. R.G. Oliveira et al., Crucial roles of charged saccharide moieties in survival of gram negative bacteria revealed by combination of grazing incidence x-ray structural characterizations and Monte Carlo simulations. Phys. Rev. E 81, 041901 and successive pages (2010)

    Article  Google Scholar 

  20. K. Brandenburg, U. Seydel, Physical aspects of structure and function of membranes made from lipopolysaccharides and free lipid A. Biochim. Biophys. Acta 775, 225 (1984)

    Article  CAS  Google Scholar 

  21. H. Labischinski, G. Barnickel, H. Bradaczek, D. Naumann, E.T. Rietschel, P. Giesbrecht, High state of order of isolated bacterial lipopolysaccharide and its possible contribution to the permeation barrier property of the outer membrane. J. Bacteriol. 162, 9 (1985)

    CAS  Google Scholar 

  22. U. Seydel, K. Brandenburg, M.H.J. Koch, E.T. Rietschel, Supramolecular structure of lipopolysaccharide and free lipid A under physiological conditions as determined by synchrotron small-angle X-ray diffraction. Eur. J. Biochem. 186, 325 (1989)

    Article  CAS  Google Scholar 

  23. D.C. Grahame, Diffuse double layer theory for electrolytes of unsymmetrical valence types. J. Chem. Phys. 21, 1054 (1953)

    Article  CAS  Google Scholar 

  24. B.W. Ninham, V.A. Parsegian, Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J. Theor. Biol. 31, 405 (1971)

    Article  CAS  Google Scholar 

  25. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press Inc., London, 1985)

    Google Scholar 

  26. R.T. Coughlin, A.A. Peterson, A. Haug, H.J. Pownall, E.J. McGroarty, A pH titration study on the ionic bridging within lipopolysaccharide aggregate. Biochim. Biophys. Acta 821, 404 (1985)

    Article  CAS  Google Scholar 

  27. S.O. Hagge, M.U. Hammer, A. Wiese, U. Seydel, T. Gutsmann, Calcium adsorption and displacement: characterization of lipid monolayers and their interaction with membrane-active peptides/proteins. BMC Biochem. 7(1), 15 (2006)

    Article  Google Scholar 

  28. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press Inc., London, 1991)

    Google Scholar 

  29. K. Hu, A.J. Bard, Use of atomic force microscopy for the study of surface acid-base properties of carboxylic acid-terminated self-assembled monolayers. Langmuir 13(19), 5114–5119(1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Schneck .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneck, E. (2011). Structure and Mechanical Properties of Bacteria Surfaces. In: Generic and Specific Roles of Saccharides at Cell and Bacteria Surfaces. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15450-8_6

Download citation

Publish with us

Policies and ethics