Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 490 Accesses

Abstract

Queried, to come from the author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Archaea possess lipids with two hydrophilic moieties, which leads to different molecular self-assembly.

  2. 2.

    This is the case for lipids with phosphatidylcholine headgroups (such as DPPC), where this tilted phase is denoted as Lβ′-phase.

  3. 3.

    Phase transitions can also be induced by other thermodynamic parameters, such as pressure or concentration.

  4. 4.

    This is the reason why the extent, to which the width of a Bragg sheet increases with \( q_{||} \) (the reciprocal space analogue to an in-plane wavelength), increases along with the de Gennes parameter.

  5. 5.

    Within the frame of this thesis and for the explanations below it is not necessary to consider the scattering into directions which are not part of the plane of incidence.

  6. 6.

    Often the asymptotic q −4 z factor is replaced by the reflectivity curve of an ideal interface between the semi-infinite media. The results of this “hybrid” description come close to those of the full dynamical treatment in some cases.

  7. 7.

    Such a parameterization is commonly used to describe interfaces with self-affine roughness [40], but cannot describe all types of surface topologies (see Sect. 4.1.1).

References

  1. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press Inc., London, 1991)

    Google Scholar 

  2. J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. II 72, 1525 (1976)

    Article  Google Scholar 

  3. E. Sackmann, in Structure and Dynamics of Membranes, ed. by R. Lipowski, E. Sackmann (Elsevier, Amsterdam, 1995)

    Google Scholar 

  4. R. Koynova, M. Caffrey, Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta 1376, 91 (1998)

    CAS  Google Scholar 

  5. D. Marsh, General features of phospholipid phase transitions. Chem. Phys. Lipids 57, 109 (1991)

    Article  CAS  Google Scholar 

  6. A. Ben-Shaul, in Structure and Dynamics of Membranes, ed. by R. Lipowski, E. Sackmann (Elsevier, Amsterdam, 1995)

    Google Scholar 

  7. B.V. Derjaguin, N.V. Churaev, Surface Forces (Consultants Bureau, New York, 1987)

    Google Scholar 

  8. B.V. Derjaguin, L.D. Landau, A theory of the stability of strongly charged lyophobic sols and the coalescence of strongly charged particles in electrolytic solution. Acta Physicochim. URSS 14, 633 (1941)

    Google Scholar 

  9. P.C. Hiemenz, Principles of Colloid and Surface Chemistry (Dekker, New York and Basel, 1977)

    Google Scholar 

  10. E.J. Verwey, J.T.G. Overbeek, Theory of Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948)

    Google Scholar 

  11. R.P. Rand, V.A. Parsegian, Hydration Forces between Phospholipid-Bilayers. Biochim. Biophys. Act. 988, 351 (1989)

    CAS  Google Scholar 

  12. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, General theory of van der Waals’ forces. Adv. Phys. 10, 165 (1961)

    Article  Google Scholar 

  13. E.M. Lifshitz, The theory of molecular attractive forces between solids. Soviet Phys. JETP (Engl. Transl.) 2, 73 (1956)

    Google Scholar 

  14. E. Evans, D. Needham, in Physics of Amphiphilic Layers, vol. 21, ed. by J. Meunier, D. Langevin (Springer, Berlin, 1987)

    Google Scholar 

  15. B.W. Ninham, V.A. Parsegian, Van der Waals forces: special characteristics in lipid–water systems and a general method of calculation based on the Lifshitz theory. Biophys. J. 10, 646 (1970)

    Article  CAS  Google Scholar 

  16. B. Demé, M. Dubois, T. Zemb, Swelling of a lecithin lamellar phase induced by small carbohydrate solutes. Biophys. J. 82, 215 (2002)

    Article  Google Scholar 

  17. D.M. LeNeveu, R.P. Rand, V.A. Parsegian, Measurements of forces between lecithin bilayers. Nature 259, 601 (1976)

    Article  CAS  Google Scholar 

  18. L.J. Lis, M. McAlister, N. Fuller, R.P. Rand, V.A. Parsegian, Interactions between neutral phospholipid bilayer membranes. Biophys. J. 37, 657 (1982)

    CAS  Google Scholar 

  19. M. Bachmann, H. Kleinert, A. Pelster, Fluctuation pressure of a stack of membranes. Phys. Rev. E 63, 051709 (2001)

    Article  CAS  Google Scholar 

  20. W. Helfrich, Steric interaction of fluid membranes in multilayer systems. Z. Naturforsch. 33a, 305 (1978)

    CAS  Google Scholar 

  21. W. Helfrich, Lyotropic lamellar phases. J. Phys. Condens. Matter 6, A79 (1994)

    Article  CAS  Google Scholar 

  22. V.A. Parsegian, N. Fuller, R.P. Rand, Measured work of deformation and repulsion of lecithin bilayers. Proc. Natl. Acad. Sci. USA 76, 2750 (1979)

    Article  CAS  Google Scholar 

  23. L.D. Landau, E.M. Lifshitz, Statistische Physik Teil 1 (Akademie Verlag, Berlin, 1987)

    Google Scholar 

  24. H. Möhwald, in Structure and Dynamics of Membranes, ed. by R. Lipowski, E. Sackmann (Elsevier, Amsterdam, 1995)

    Google Scholar 

  25. F. Rehfeldt, R. Steitz, S.P. Armes, R.v. Klitzing, A.P. Gast, M. Tanaka, Reversible activation of Diblock copolymer monolayers at the interface by pH modulation, 1: lateral chain density and conformation. J. Phys. Chem. B 110, 9171 (2006)

    Article  CAS  Google Scholar 

  26. R.G. Oliveira et al., Physical mechanisms of bacterial survival revealed by combined grazing-incidence X-ray scattering and Monte Carlo simulation. C. R. Chim. 12, 209 (2009)

    Article  CAS  Google Scholar 

  27. M.F. Schneider, K. Lim, G.G. Fuller, M. Tanaka, Rheology of glycocalix model at air/water interface. Phys. Chem. Chem. Phys. 4, 1949 (2002)

    Article  CAS  Google Scholar 

  28. D. Gassull, A. Ulman, M. Grunze, M. Tanaka, Electrochemical sensing of membrane potential and enzyme function using gallium arsenide electrodes functionalized with supported membranes. J. Phys. Chem. B 112, 5736 (2008)

    Article  CAS  Google Scholar 

  29. I. Langmuir, V.J. Schaefer, Activities of urease and pepsin monolayers. J. Am. Chem. Soc. 60, 1351 (1938)

    Article  CAS  Google Scholar 

  30. M. Tanaka, E. Sackmann, Polymer-supported membranes as models of the cell surface. Nature 437, 656 (2005)

    Article  CAS  Google Scholar 

  31. T. Schubert, M. Bärmann, M. Rusp, W. Gränzer, M. Tanaka, Diffusion of glycosylphosphatidylinositol (GPI)-anchored bovine prion protein (PrPc) in supported lipid membranes studied by single-molecule and complementary ensemble methods. J. Membr. Sci. 231, 61 (2008)

    Article  Google Scholar 

  32. M. Tanaka, S. Kaufmann, J. Nissen, M. Hochrein, Orientation selective immobilization of human erythrocyte membranes on ultrathin cellulose films. Phys. Chem. Chem. Phys. 3, 4091 (2001)

    Article  CAS  Google Scholar 

  33. M. Tanaka, E. Sackmann, Supported membranes as biofunctional interfaces and smart biosensor platforms. Phys. Stat. Sol. 203, 3452 (2006)

    Article  CAS  Google Scholar 

  34. J. Als-Nielsen, D. McMorrow, Elements of modern X-ray physics (Wiley, Chichester, 2001)

    Google Scholar 

  35. A.-J. Dianoux, G. Lander, Neutron Data Booklet (Old City Publishing, Philadelphia, 2003)

    Google Scholar 

  36. T.P. Russell, X-ray and neutron reflectivity for the investigation of polymers. Mater. Sci. Rep. 5, 171 (1990)

    Article  CAS  Google Scholar 

  37. M. Tolan, X-Ray Scattering from Soft-Matter Thin Films: Materials Science and Basic Research (Springer, New York, 1999)

    Google Scholar 

  38. V.F. Sears, Neutron scattering lengths and cross sections. Neutron News 3, 26 (1992)

    Article  Google Scholar 

  39. B. Povh, K. Rith, C. Scholz, F. Zetsche, Teilchen und Kerne. Eine Einführung in die physikalischen Konzepte (Springer, Berlin, 2004)

    Google Scholar 

  40. V. Holý, T. Baumbach, Nonspecular X-ray reflection from rough multilayers. Phys. Rev. B 49, 10668 (1994)

    Article  Google Scholar 

  41. R. Pynn, Neutron scattering by rough surfaces at grazing incidence. Phys. Rev. B 45, 602 (1991)

    Article  Google Scholar 

  42. S.K. Sinha, X-ray diffuse-scattering as a probe for thin-film and interface structure. J. Phys. III 4, 1543 (1994)

    Article  CAS  Google Scholar 

  43. S.K. Sinha, E.B. Sirota, S. Garoff, X-ray and neutron scattering from rough surfaces. Phys. Rev. B 38, 2297 (1988)

    Article  Google Scholar 

  44. D.A. Doshi, E.B. Watkins, J.N. Israelachvili, J. Majewski, Reduced water density at hydrophobic surfaces: effect of dissolved gases. Proc Natl Acad Sci USA 102, 9458 (2005)

    Article  CAS  Google Scholar 

  45. F. Rehfeldt, R. Steitz, R.v. Klitzing, S.P. Armes, A.P. Gast, M. Tanaka, Reversible activation of Diblock copolymer monolayers at the interface by pH modulation (2): membrane interactions at the solid/liquid interface. J. Phys. Chem. B 110, 9177 (2006)

    Article  CAS  Google Scholar 

  46. T. Schubert, P. Seitz, E. Schneck, M. Nakamura, M. Shibakami, S.S. Funari, O. Konovalov, M. Tanaka, Structure of synthetic transmembrane lipid membranes at the solid/liquid interface studied by specular X-ray reflectivity. J. Phys. Chem. B 112, 10041 (2008)

    Article  CAS  Google Scholar 

  47. I.M. Tidswell, B. Ocko, P.S. Pershan, S.R. Wasserman, G.M. Whitesides, J.D. Axe, X-ray specular reflection studies of silicon coated by organic monolayers (alkylsiloxanes). Phys. Rev. B 41, 1111 (1990)

    Article  CAS  Google Scholar 

  48. L. Névot, P. Croce, Characterization of surfaces by grazing X-ray reflection––application to the study of polishing of some silicate glasses. Rev. Phys. Appl. 15, 761 (1980)

    Google Scholar 

  49. L.G. Parratt, Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359 (1954)

    Article  Google Scholar 

  50. F. Abelès, Recherches théoriques sur les propriétés optiques des lames minces. J. Phys. Rad. 11, 307 (1950)

    Article  Google Scholar 

  51. V. Nitz, M. Tolan, J.-P. Schlomka, O.H. Seeck, J. Stettner, W. Press, M. Stelzle, E. Sackmann, Correlations in the interface structure of Langmuir–Blodgett films observed by X-ray scattering. Phys. Rev. B 54, 5038 (1996)

    Article  CAS  Google Scholar 

  52. J.-P. Schlomka, M. Tolan, L. Schwalowsky, J. Stettner, W. Press, X-ray diffraction from Si/Ge layers: diffuse scattering in the region of total external reflection. Phys. Rev. B 51, 2311 (1995)

    Article  CAS  Google Scholar 

  53. B. Demé, M. Dubois, T. Zemb, B. Cabane, Effect of carbohydrates on the swelling of a lyotropic lamellar phase. J. Phys. Chem. 100, 3828 (1996)

    Article  Google Scholar 

  54. N. Lei, C.R. Safinya, R.F. Bruinsma, Discrete harmonic model for stacked membranes––theory and experiment. J. Phys. II 5, 1155 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Schneck .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneck, E., Tanaka, M. (2011). Theoretical Background. In: Generic and Specific Roles of Saccharides at Cell and Bacteria Surfaces. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15450-8_2

Download citation

Publish with us

Policies and ethics