Skip to main content

An Adaptive Approach for Integration Analysis of Multiple Gene Expression Datasets

  • Conference paper
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6304))

Abstract

In recent years, microarray gene expression profiles have become a common technique for inferring the relationship or regulation among different genes. While most of the previous work on microarray analysis focused on individual datasets, some global studies exploiting large numbers of microarrays have been presented recently. In this paper, we investigate how to integrate microarray data coming from different studies for the purpose of gene dependence analysis. In contrast to a meta-analysis approach, where results are combined on an interpretative level, we propose a method for direct integration analysis of gene relationships across different experiments and platforms. First, the algorithm utilizes a suitable metric in order to measure the relation between gene expression profiles. Then for each considered dataset a quadratic matrix that contains the interrelation values calculated between the expression profiles of each gene pair is constructed. Further a recursive aggregation algorithm is used in order to transform the set of constructed interrelation matrices into a single matrix, consisting of one overall inter-gene relation value per gene pair. At this stage a matrix of overall inter-gene relations obtained from previous data can be added and aggregated together with the currently constructed interrelation matrices. In this way, the previously generated integration results can, in fact, be updated with newly arriving ones studying the same phenomena. The obtained overall inter-gene relations can be considered as trade-off values agreed between the different experiments. These values express the gene correlation coefficients and therefore, may directly be analyzed in order to find the relationship among the genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett, T., et al.: NCBI GEO: mining tens of millions of expression profiles - database and tools update. Nucleic Acids Research 35(Database issue), 760–765 (2007)

    Article  Google Scholar 

  2. Barth, A.S., et al.: Identification of a Common Gene Expression Signature in Dilated Cardiomyopathy Across Independent Microarray Studies. Journal of the American College of Cardiology 48(8), 1610–1617 (2006)

    Article  Google Scholar 

  3. Boeva, V., Kostadinova, E.: A Hybrid DTW based Method for Integration Analysis of Time Series. In: Data. Proc. ICAIS 2009, Austria, pp. 49–54 (2009)

    Google Scholar 

  4. Choi, J.K., et al.: Combining multiple microarray studies and modeling interstudy variation. Bioinformatics 19, i84–i90 (2003)

    Article  Google Scholar 

  5. Eisen, M., Spellman, P., Brown, P., Bostein, D.: Cluster analysis and display of genome-wide expression patterns. PNAS 95(25), 14863–14868 (1998)

    Article  Google Scholar 

  6. Hu, P., et al.: Integrative analysis of multiple gene expression profiles with quality-adjusted effect size models. BMC Bioinformatics 6, 128 (2005)

    Article  Google Scholar 

  7. Jansen, R., Greenbaum, D., Gerstein, M.: Relating whole-genome expression data with protein-protein interactions. Genome Res. 12(1), 37 (2002)

    Article  Google Scholar 

  8. Kang, J., et al.: Integrating heterogeneous microarray data sources using correlation signatures. In: Ludäscher, B., Raschid, L. (eds.) DILS 2005. LNCS (LNBI), vol. 3615, pp. 105–120. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Kittleson, M.M., Minhas, K.M., Irizarry, R.A., et al.: Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiological Genomics 21, 299–307 (2005)

    Article  Google Scholar 

  10. Kuo, P.W., et al.: Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 18, 405–412 (2002)

    Article  Google Scholar 

  11. Lin, K., Kang, J.: Exploiting inter-gene information for microarray data integration. In: Proc. SAC 2007, Korea, pp. 123–127 (2007)

    Google Scholar 

  12. Oliva, A., et al.: The cell cycle-regulated genes of Schizosaccharomyces pombe. PLOS 3(7), 1239–1260 (2005)

    Google Scholar 

  13. Rhodes, D.R., et al.: Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. USA 101, 9309–9314 (2004)

    Article  Google Scholar 

  14. Roger, V.L., Weston, S.A., Redfield, M.M., et al.: Trends in heart failure incidence and survival in a community-based population. JAMA 292, 344–350 (2004)

    Article  Google Scholar 

  15. Rustici, G., et al.: Periodic gene expression program of the fission yeast cell cycle. Nat. Genetics 36, 809–817 (2004)

    Article  Google Scholar 

  16. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. on Acoust, Speech, and S. Proc. ASSP-26, 43–49 (1978)

    Article  Google Scholar 

  17. Tornow, S.: Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res. 31(21), 6283–6289 (2003)

    Article  Google Scholar 

  18. Tsiporkova, E., Boeva, V.: Fusing Time Series Expression Data through Hybrid Aggregation and Hierarchical Merge. Bioinformatics 24(16), i63–i69 (2008)

    Article  Google Scholar 

  19. Tsiporkova, E., Boeva, V.: Nonparametric Recursive Aggregation Process. Kybernetika, J. of the Czech Society for Cyber. and Inf. Sci. 40(1), 51–70 (2004)

    MathSciNet  Google Scholar 

  20. Tsiporkova, E., Boeva, V.: Two-pass imputation algorithm for missing value estimation in gene expression time series. J. of Bioinformatics and Computational Biology 5(5), 1005–1022 (2007)

    Article  Google Scholar 

  21. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001)

    Article  MATH  Google Scholar 

  22. Yuen, T., et al.: Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 30, e48 (2002)

    Google Scholar 

  23. Zhou, et al.: Functional annotation and network reconstruction through cross-platform integration of microarray data. Nature Biotechnology 23(2), 238–243 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boeva, V., Kostadinova, E. (2010). An Adaptive Approach for Integration Analysis of Multiple Gene Expression Datasets. In: Dicheva, D., Dochev, D. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2010. Lecture Notes in Computer Science(), vol 6304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15431-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15431-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15430-0

  • Online ISBN: 978-3-642-15431-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics