Skip to main content

Modification of Nano/Micromaterials

  • Chapter
  • First Online:
Book cover Metallic Micro and Nano Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1129 Accesses

Abstract

Although nano/micromaterials have attracted considerable attention due to their excellent physical properties and geometrical merits, these should be modified for specific purposes or be assembled in systems for many fields of application. The cutting and welding of materials must be the principle operation for this purpose. The welding and cutting technology utilizing Joule heat is first described together with some experiments and applications. First, heat transfer problem in thin wires are treated. And then, two Pt wires with diameters of about 800 nm are shown to successfully be welded by Joule heating. Melting and solidification at the point contact of thin wires occurred continuously under a constant current supply and the welding of wires is completed within several seconds in self-completed manner. Moreover, the welding technology for low-dimensional materials have been found to be effective for manipulating materials and for generating functional elements, e.g., electromagnetic rings and thermoelectric elements. A unique technique for creating nanocoils from straight nanowires is described.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-15411-9_7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, O.L.: Determination and some uses of isotropic elastic constants of polycrystalline aggregates using single-crystal data. In: Mason, W.P. (ed.) Physical Acoustics III—Part B. Academic Press, New York (1965)

    Google Scholar 

  2. Bhola, B., Song, H.C., Tazawa, H., Steier, W.H.: Polymer microresonator strain sensors. IEEE Photon Technol. Lett. 17, 867–869 (2005)

    Article  Google Scholar 

  3. Bintoro, J.S., Papania, A.D., Berthelot, Y.H., Hesketh, P.J.: Bidirectional electromagnetic microactuator with microcoil fabricated on a single wafer: Static characteristics of membrane displacements. J. Micromech. Microeng. 15, 1378–1388 (2005)

    Article  Google Scholar 

  4. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard III, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).

    Article  Google Scholar 

  5. Brady, G.S., Clauser, H.R., Vaccari, J.A.: Materials Handbook, 15th edn. McGraw-Hill, New York (2002)

    Google Scholar 

  6. Cahn, J.W.: Surface stress and the chemical equilibrium of small crystals – I. the case of the isotropic surface. Acta Metall. 28, 1333–1338 (1980)

    Article  Google Scholar 

  7. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  8. Carl, A., Lohau, J., Kirsch, S., Wassermann, E.F.: Magnetization reversal and coercivity of magnetic-force microscopy tips. J. Appl. Phys. 89, 6098–6104 (2001)

    Article  Google Scholar 

  9. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, London (1959)

    Google Scholar 

  10. Chen, Y., Lebib, A., Li, S.P., Natali, M., Peyrade, D., Cambril, E.: Nanoimprint fabrication of micro-rings for magnetization reversal studies. Microelectron. Eng. 5758, 405–410 (2001)

    Article  Google Scholar 

  11. Day, G.W., Gaddy, O.L., Iversen, R.J.: Detection of fast infrared laser pulses with thin film thermocouples. Appl. Phys. Lett. 13, 289–290 (1968)

    Article  Google Scholar 

  12. Dick, K., Dhanasekaran, T., Zhang, Z., Meisel, D.: Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002)

    Article  Google Scholar 

  13. Doelling, C.M., Vanderlick, T.K., Song, J., Srolovitz, D.: Nanospot welding and contact evolution during cycling of a model microswitch. J. Appl. Phys. 101, 124303(1–7) (2007)

    Google Scholar 

  14. Doerner, M.F., Nix, W.D.: Stress and deformation processes in thin films on substrates. Crit. Rev. Solid State Mater. Sci. 14, 225–268 (1988)

    Article  Google Scholar 

  15. Duan, J., Yang, S., Liu, H., Gong, J., Huang, H., Zhao, X., Tang, J., Zhang, R., Du, Y.: AlN nanorings. J. Cryst. Growth 283, 291–296 (2005)

    Article  Google Scholar 

  16. García-Labiano, F., de Diego, L.F., Adánez, J., Abad, A., Gayán, P.: Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system. Chem. Eng. Sci. 60, 851–862 (2005)

    Article  Google Scholar 

  17. Goldstein, A.N., Echer, C.M., Alivisatos, A.P.: Melting in semiconductor nanocrystals. Science 256, 1425–1427 (1992)

    Article  Google Scholar 

  18. Hirayama, H., Kawamoto, Y., Ohshima, Y., Takayanagi, K.: Nanospot welding of carbon nanotubes. Appl. Phys. Lett. 79, 1169–1171 (2001)

    Article  Google Scholar 

  19. Huang, J., Kaner, R.B.: Flash welding of conducting polymer nanofibres. Nature Mater. 3, 783–786 (2004)

    Article  Google Scholar 

  20. Huang, M., Boon, C., Roberts, M., Savage, D.E., Lagally, M.G., Shaji, N., Qin, H., Blick, R., Nairn, J.A., Liu, F.: Nanomechanical architecture of strained bilayer thin films: from design principles to experimental fabrication. Adv. Mater. 17, 2860–2864 (2005)

    Article  Google Scholar 

  21. Jiang, X., Herricks, T., Xia, Y.: CuO nanowires can be synthesized by heating copper substrates in air. Nano. Lett. 2, 1333–1338 (2002)

    Article  Google Scholar 

  22. Jin, C., Suenaga, K., Iijima, S.: Plumbing carbon nanotubes. Nature Nanotechnol. 3, 17–21 (2008)

    Article  Google Scholar 

  23. Kim, J.W., Jung, M.H., Park, N.K., Yun, E.J.: Microfabrication of solenoid-type RF SMD chip inductors with an Al2O3 core. Curr. Appl. Phys. 8, 631–636 (2008)

    Article  Google Scholar 

  24. Kim, S.J., Jang, D.-J.: Laser-induced nanowelding of gold nanoparticles. Appl. Phys. Lett. 86, 033112(1–3) (2005)

    Google Scholar 

  25. Koch, R.: The intrinsic stress of polycrystalline and epitaxial thin metal films. J. Phys. Condens. Matter 6, 9519–9550 (1994)

    Article  Google Scholar 

  26. Kollár, L.P., Springer, G.S.: Mechanics of Composite Structures. Cambridge University, Cambridge (2003)

    Book  Google Scholar 

  27. Kong, X.Y., Wang, Z.L.: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano. Lett. 3, 1625–1631 (2003)

    Article  Google Scholar 

  28. Krasheninnikov, A.V., Nordlund, K., Keinonen, J., Banhart, F.: Ion-irradiation-induced welding of carbon nanotubes. Phys. Rev. B. 66, 245403(1–6) (2002)

    Article  Google Scholar 

  29. Lee, C.Y., Chang, H.T., Wen, C.Y.: A MEMS-based valveless impedance pump utilizing electromagnetic actuation. J. Micromech. Microeng. 18, 035044(1–9) (2008)

    Article  Google Scholar 

  30. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003)

    Article  Google Scholar 

  31. Li, X., Gao, H., Murphy, C.J., Caswell, K.K.: Nanoindentation of silver nanowires. Nano. Lett. 3, 1495–1498 (2003)

    Article  Google Scholar 

  32. Liu, H., Cui, H., Wang, J., Gao, L., Hang, F., Boughton, R.I., Jiang, M.: Growth of NaFe4P12 skutterudite single crystalline nanosprings synthesized through a hydrothermal-reduction-alloying method. J. Phys. Chem. B 108, 13254–13257 (2004)

    Article  Google Scholar 

  33. Mcllroy, D.N., Zhang, D., Kranov, Y., Norton, M.G.: Nanospring. Appl. Phys. Lett. 79, 1540–1542 (2001)

    Article  Google Scholar 

  34. Muraoka, M., Settsu, N., Saka, M.: Residual-strain-induced nanocoils of metallic nanowires. J. Nanosci. Nanotechnol. 8, 439–442 (2008)

    Article  Google Scholar 

  35. Nakamatsu, K., Nagase, M., Igaki, J., Namatsu, H., Matsui, S.: Mechanical characteristics and its annealing effect of diamondlike-carbon nanosprings fabricated by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 23, 2801–2805 (2005)

    Article  Google Scholar 

  36. Peng, Y., Cullis, T., Inkson, B.: Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano. Lett. 9, 91–96 (2009)

    Article  Google Scholar 

  37. Sacharoff, A.C., Westervelt, R.M.: Physical properties of ultrathin drawn Pt wires. Phys. Rev. B 29, 6411–6418 (1984)

    Article  Google Scholar 

  38. Saka, M., Sun, Y.X., Ahmed, S.R.: Heat conduction in a symmetric body subjected to a current flow of symmetric input and output. Int. J. Thermal. Sci. 48, 114–121 (2009)

    Article  Google Scholar 

  39. Saka, M., Yamaya, F., Tohmyoh, H.: Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films. Scr. Mater. 56, 1031–1034 (2007)

    Article  Google Scholar 

  40. Schmid, R.: A thermodynamic analysis of the Cu–O system with an associated solution model. Metall. Trans. B 14, 473–481 (1983)

    Article  Google Scholar 

  41. Schmidt, O.G., Eberl, K.: Thin solid films roll up into nanotubes. Nature 410, 168 (2001)

    Article  Google Scholar 

  42. Seidemann, V., Büttgenbach, S.: Closely coupled micro coils with integrated flux guidance: fabrication technology and application to proximity and magnetoelastic force sensors. IEEE Sensors J. 3, 615–621 (2003)

    Article  Google Scholar 

  43. Shen, G.Z., Bando, Y., Zhi, C.Y., Yuan, X.L., Sekiguchi, T., Golberg, D.: Single-crystalline cubic structured InP nanosprings. Appl. Phys. Lett. 88, 243106(1–3) (2006)

    Google Scholar 

  44. Shi, L., Plyasunov, S., Bachtold, A., McEuen, P.L., Majumdar, A.: Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes. Appl. Phys. Lett. 77, 4295–4297 (2000)

    Article  Google Scholar 

  45. Sutanto, J., Hesketh, P.J., Berthelot, Y.H.: Design, microfabrication and testing of a CMOS compatible bistable electromagnetic microvalve with latching/unlatching mechanism on a single wafer. J. Micromech. Microeng. 16, 266–275 (2006)

    Article  Google Scholar 

  46. Tan, E.P.S., Zhu, Y., Dai, L., Sow, C.H., Tan, V.B.C., Lim, C.T.: Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 90, 163112(1–3) (2007)

    Google Scholar 

  47. Thornton, J.A., Hoffman, D.W.: Stress-related effects in thin films. Thin Solid Films 171, 5–31 (1989)

    Article  Google Scholar 

  48. Tohmyoh, H.: A governing parameter for the melting phenomenon at nanocontacts by Joule heating and its application to joining together two thin metallic wires. J. Appl. Phys. 105, 014907(1–9) (2009)

    Google Scholar 

  49. Tohmyoh, H., Fukui, S.: Self-completed Joule heat welding of ultrathin Pt wires. Phys. Rev. B 80, 155403(1–7) (2009)

    Google Scholar 

  50. Tohmyoh, H., Imaizumi, T., Hayashi, H., Saka, M.: Welding of Pt nanowires by Joule heating. Scr. Mater. 57, 953–956 (2007)

    Article  Google Scholar 

  51. Tohmyoh, H., Takeda, H., Akanda, M.A.S.: Evaluation of mechanical and electrical properties of very-thin Pt wires by utilizing joining technique with Joule heating. J. Soc. Mater. Sci. 58, 847–851 (2009) (in Japanese)

    Google Scholar 

  52. Tohmyoh, H., Takeda, H., Khan, M.N.I., Saka, M.: Fabrication of freestanding thin Pt/W thermocouple by Joule heat welding. Proc. EuroSimE. 2010, 1–4 (2010)

    Google Scholar 

  53. Tohmyoh, H., Takeda, H, Saka, M.: Fabrication of a free-standing Pt MR on an electrode chip as a small magnetic source. J. Micromech. Microeng. 19, 085013(1–5) (2009)

    Google Scholar 

  54. Toku, Y., Muraoka, M.: Helical formation of coated nanowires by viscous flow of core material. Nanosci. Nanotechnol. Lett. (2010) (in press)

    Google Scholar 

  55. Townsend, P.H., Barnett, D.M., Brunner, T.A.: Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate. J. Appl. Phys. 62, 4438–4444 (1987)

    Article  Google Scholar 

  56. Tsai, S.H., Shiu, C.T., Jong, W.J., Shih, H.C.: The welding of carbon nanotubes. Carbon 38, 1899–1902 (2000)

    Article  Google Scholar 

  57. Varadan, V.K., Hollinger, R.D., Varadan, V.V., Xie, J., Sharma, P.K.: Development and characterization of micro-coil carbon fibers by a microwave CVD system. Smart Mater. Struct. 9, 413–420 (2000)

    Article  Google Scholar 

  58. Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)

    Article  Google Scholar 

  59. Wang, J., Chen, X., Wang, G., Wang, B., Lu, W., Zhao, J.: Melting behavior in ultrathin metallic nanowires. Phys. Rev. B 66, 085408(1–5) (2002)

    Google Scholar 

  60. Wang, Z.L., Petroski, J.M., Green, T.C., El-Sayed, M.A.: Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J. Phys. Chem. B 102, 6145–6151 (1998)

    Article  Google Scholar 

  61. Watson, C.C., Chan, W.K.: High-spatial-resolution semiconductor characterization using a microwave eddy current probe. Appl. Phys. Lett. 78, 129–131 (2001)

    Article  Google Scholar 

  62. Williams, C.C., Wickramasinghe, H.K.: Scanning thermal profiler. Appl. Phys. Lett. 49, 1587–1589 (1986)

    Article  Google Scholar 

  63. Wu, B., Heidelberg, A., Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nature Mater. 4, 525–529 (2005)

    Article  Google Scholar 

  64. Wu, Y., Yang, P.: Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 13, 520–523 (2001)

    Article  Google Scholar 

  65. Xu, S., Tian, M., Wang, J., Xu, J., Redwing, J.M., Chan, M.H.W.: Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221–1229 (2005)

    Article  Google Scholar 

  66. Yamaguchi, M., Suezawa, K., Arai, K.I., Takahashi, Y., Kikuchi, S., Shimada, Y., Li, W.D., Tanabe S, Ito, K.: Microfabrication and characteristics of magnetic thin-film inductors in the ultrahigh frequency region. J. Appl. Phys. 85, 7919–7922 (1999)

    Article  Google Scholar 

  67. Yang, R.S., Wang, Z.L.: Springs, rings, and spirals of rutile-structured tin oxide nanobelts. J. Am. Chem. Soc. 128, 1466–1467 (2006)

    Article  Google Scholar 

  68. Zhang, D., Alkhateeb, A., Han, H., Mahmood, H., Mcllroy, D.N.: Silicon carbide nanosprings. Nano. Lett. 3, 983–987 (2003)

    Article  Google Scholar 

  69. Zhang, X., Li, X.: Design, fabrication and characterization of optical microring sensors on metal substrates. J. Micromech. Microeng. 18, 015025(1–7) (2008)

    Google Scholar 

Download references

Acknowledgments

H. Tohmyoh acknowledges partial support from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan under Grant-in-Aid for Young Scientists (A) Grant No. 21686012 and S. Fukui for his help in preparing the manuscript. M. Muraoka acknowledges partial support from the Japan Society for the Promotion of Science (JSPS), through the Grant-in-Aid for Scientific Research (B) Grant No. 20360049 and Ms. Y. Ishigami and Y. Toku for their help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Tohmyoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tohmyoh, H., Muraoka, M. (2010). Modification of Nano/Micromaterials. In: Saka, M. (eds) Metallic Micro and Nano Materials. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15411-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15411-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15410-2

  • Online ISBN: 978-3-642-15411-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics