Skip to main content

Evaluation of Mechanical Properties

  • Chapter
  • First Online:
  • 1162 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Mechanical properties such as elastic modulus, fracture stress, and yield stress of nano/micromaterials are fundamental data for practical design of nano/micromaterial-based devices. These properties generally differ from those of bulk material because of size effects. This chapter is devoted to an introduction of some techniques for evaluating the mechanical properties of nanowires and thin wires. In order to clarify the advantages of the techniques that we introduce, the first section gives an overview of typical techniques reported so far. In the subsequent sections, we take up atomic force acoustic microscopy using a concentrated-mass cantilever and a bending method based on the geometrically nonlinear problem on the bent shape, i.e., elastica, for evaluating elastic modulus and bending strength of brittle nanowires. Finally, evaluation of elastic–plastic properties of metallic thin wires is demonstrated by means of unsymmetrical, small-span bending test.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-15411-9_7

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akanda, M.A.S., Tohmyoh, H., Saka, M.: An integrated compact unit for wide range micro-newton force measurement. J. Solid Mech. Mater. Eng. 4, 545–556 (2010)

    Article  Google Scholar 

  2. Akita, S., Nishijima, H., Kishida, T., Nakayama, Y.: Influence of force acting on side face of carbon nanotube in atomic force microscopy. Jpn. J. Appl. Phys. 39, 3724–3727 (2000)

    Article  Google Scholar 

  3. ASM International: Metals Handbook, 10th edn, vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Materials Park, OH (1990)

    Google Scholar 

  4. Bai, X.D., Gao, P.X., Wang, Z.L.: Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 82, 4806–4808 (2003)

    Article  Google Scholar 

  5. Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  6. Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Helv. Phys. Acta. 55, 726–735 (1982)

    Google Scholar 

  7. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)

    Google Scholar 

  8. Bowman, F.: Introduction to Elliptic Functions with Applications. Dover, New York (1961)

    MATH  Google Scholar 

  9. Broughton, J.Q., Meli, C.A., Vashishta, P., Kalia, R.K.: Direct atomistic simulation of quartz crystal oscillators: bulk properties and nanoscale devices. Phys. Rev. B 56, 611–618 (1997)

    Article  Google Scholar 

  10. Burnham, N.A., Gremaud, G., Kulik, A.J., Gallo, P.-J., Oulevey, F.: Materials’ properties measurements: choosing the optimal scanning probe microscope configuration. J. Vac. Sci. Technol. B 14, 1308–1312 (1996)

    Article  Google Scholar 

  11. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  12. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505(1–4) (2006)

    Google Scholar 

  13. Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410(1–5) (2004)

    Google Scholar 

  14. Gao, R., Wang, Z.L., Bai, Z., de Heer, W.A., Dai, L., Gao, M.: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 85, 622–625 (2000)

    Article  Google Scholar 

  15. Giessibl, F.J.: Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy. Science 267, 68–71 (1995)

    Article  Google Scholar 

  16. Gilman, J.J.: Cleavage, ductile, and tenacity in crystals. In: Averbach, B.L., Felbeck, D.K., Hahn, G.T., Thomas, D.A. (eds.) Fracture. Technology Press of MIT, Cambridge (1959)

    Google Scholar 

  17. Hoffmann, S., Utke, I., Moser, B., Michler, J., Christiansen, S.H., Schmidt, V., Senz, S., Werner, P., Gösele, U., Ballif, C.: Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 6, 622–625 (2006)

    Article  Google Scholar 

  18. Hoffmann, S., Östlund, F., Michler, J., Fan, H.J., Zacharias, M., Christiansen, S.H., Ballif, C.: Fracture strength and Young’s modulus of ZnO nanowires. Nanotechnology 18, 205503–205507 (2007)

    Article  Google Scholar 

  19. Hoummady, M., Farnault, E.: Enhanced sensitivity to force gradients by using higher flexural modes of the atomic force microscope cantilever. Appl. Phys. A 66, S361–S364 (1998)

    Article  Google Scholar 

  20. Jiang, X., Herricks, T., Xia, Y.: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333–1338 (2002)

    Article  Google Scholar 

  21. Kis, A., Mihailovic, D., Remskar, M., Mrzel, A., Jesih, A., Piwonski, I., Kulik, A.J., Benoit, W., Forró, L.: Shear and Young’s moduli of MoS2 nanotube ropes. Adv. Mater. 15, 733–736 (2003)

    Article  Google Scholar 

  22. Kolosov, O., Yamanaka, K.: Nonlinear detection of ultrasonic vibrations in an atomic force microscope. Jpn. J. Appl. Phys. 32, L1095–L1098 (1993)

    Article  Google Scholar 

  23. Kulkarni, A.J., Zhou, M., Ke, F.J.: Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16, 2749–2756 (2005)

    Article  Google Scholar 

  24. Li, X.D., Gao, H.S., Murphy, C.J., Caswell, K.K.: Nanoindentation of silver nanowires. Nano Lett. 3, 1495–1498 (2003)

    Article  Google Scholar 

  25. Li, X., Ono, T., Wang, Y., Esashi, M.: Ultrathin single-crystalline cantilever resonators: fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83, 3081–3083 (2003)

    Article  Google Scholar 

  26. Li, X., Wang, X., Xiong, Q., Eklund, P.C.: Mechanical properties of ZnS nanobelts. Nano Lett. 5, 1982–1986 (2005)

    Article  Google Scholar 

  27. Liang, H., Upmanyu, M., Huang, H.: Size-dependent elasticity of nanowires: nonlinear effects. Phys. Rev. B 71, 241403(1–4) (2005)

    Google Scholar 

  28. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 2nd edn. Cambridge University, Cambridge (1906)

    Google Scholar 

  29. Maivald, P., Butt, H.J., Gould, S.A.C., Prater, C.B., Drake, B., Gurley, J.A., Elings, V.B., Hansma, P.K.: Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2, 103–106 (1991)

    Article  Google Scholar 

  30. Marrian, C.R.K.: Technology of proximal probe lithography. SPIE Optical Engineering, Bellingham (1993)

    Google Scholar 

  31. Martin, Y., Wickramasinghe, H.: Magnetic imaging by ‘force microscopy’ with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987)

    Article  Google Scholar 

  32. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

    Article  Google Scholar 

  33. Miao, W.G., Wu, Y., Zhou, H.P.: Morphologies and growth mechanisms of aluminium nitride whiskers. J. Mater. Sci. 32, 1969–1975 (1997)

    Article  Google Scholar 

  34. Miller, R.M., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  35. Motoyama, M., Fukunaka, Y., Sakka, T., Ogata, Y.H., Kikuchi, S.: Electrochemical processing of Cu and Ni nanowire arrays. J. Electroanal. Chem. 584, 84–91 (2005)

    Article  Google Scholar 

  36. Muraoka, M.: Sensitive detection of local elasticity by oscillating an AFM cantilever with its mass concentrated. JSME Int. J. A 45, 567–572 (2002)

    Article  Google Scholar 

  37. Muraoka, M.: Sensitivity-enhanced atomic force acoustic microscopy with concentrated-mass cantilevers. Nanotechnology 16, 542–550 (2005)

    Article  Google Scholar 

  38. Muraoka, M., Arnold, W.: A method of evaluating local elasticity and adhesion energy from the nonlinear response of AFM cantilever vibrations. JSME Int. J. A 44, 396–405 (2001)

    Article  Google Scholar 

  39. Muraoka, M., Tobe, R.: Mechanical characterization of nanowires based on optical diffraction images of the bent shape. J. Nanosci. Nanotechnol. 9, 4566–4574 (2009)

    Article  Google Scholar 

  40. Nam, C.-Y., Jaroenapibal, P., Tham, D., Luzzi, D.E., Evoy, S., Fischer, J.E.: Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett. 6, 153–158 (2006)

    Article  Google Scholar 

  41. Namazu, T., Isono, Y., Tanaka, T.: Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450–459 (2000)

    Article  Google Scholar 

  42. Nilsson, S.G., Borrisé, X., Montelius, L.: Size effect on Young’s modulus of thin chromium cantilevers. Appl. Phys. Lett. 85, 3555–3557 (2004)

    Article  Google Scholar 

  43. Okada, S., Mukawa, T., Kobayashi, R., Ishida, M., Ochiai, Y., Kaito, T., Matsui, S., Fujita, J.: Comparison of Young’s modulus dependency on beam accelerating voltage between electron-beam- and focused ion-beam-induced chemical vapor deposition pillars. Jpn. J. Appl. Phys. 45, 5556–5559 (2006)

    Article  Google Scholar 

  44. Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  45. Rabe, U., Arnold, W.: Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 64, 1493–1495 (1994)

    Article  Google Scholar 

  46. Rabe, U., Janser, K., Arnold, W.: Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67, 3281–3293 (1996)

    Article  Google Scholar 

  47. Rabe, U., Kester, E., Arnold, W.: Probing linear and non-linear tip-sample interaction forces by atomic force acoustic microscopy. Surf. Interface Anal. 27, 386–391 (1999)

    Article  Google Scholar 

  48. Rogers, B., Pennathur, S., Adams, J.: Nanotechnology: Understanding Small Systems. Taylor & Francis, Boca Raton (2008)

    MATH  Google Scholar 

  49. Sacharoff, A.C., Westervelt, R.M.: Physical properties of ultrathin drawn Pt wires. Phys. Rev. B 29, 6411–6418 (1984)

    Article  Google Scholar 

  50. Saka, M., Yamaya, F., Tohmyoh, H.: Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films. Scr. Mater. 56, 1031–1034 (2007)

    Article  Google Scholar 

  51. Salvetat, J.-P., Briggs, G.A.D., Bonard, J.-M., Bacsa, R.R., Kulik, A.J., Stöckli, T., Burnham, N.A., Forró, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)

    Article  Google Scholar 

  52. Salvetat, J.-P., Kulik, A.J., Bonard, J.-M., Briggs, G.A.D., Stöckli, T., Méténier, K., Bonnamy, S., Béguin, F., Burnham, N.A., Forró, L.: Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11, 161–165 (1999)

    Article  Google Scholar 

  53. Sarid, D.: Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces. Oxford University, New York (1994)

    Google Scholar 

  54. Segall, D.E., Ismail-Beigi, S., Arias, T.A.: Elasticity of nanometer-sized objects. Phys. Rev. B 65, 214109(1–10) (2002)

    Google Scholar 

  55. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  56. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104(1–11) (2005)

    Google Scholar 

  57. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  58. Song, J., Wang, X., Riedo, E., Wang, Z.L.: Elastic property of vertically aligned nanowires. Nano Lett. 5, 1954–1958 (2005)

    Article  Google Scholar 

  59. Stern, J.E., Terris, B.D., Mamin, H.J., Rugar, D.: Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl. Phys. Lett. 53, 2717–2719 (1988)

    Article  Google Scholar 

  60. Sun, C.Q., Tay, B.K., Zeng, X.T., Li, S., Chen, T.P., Zhou, J., Bai, H.L., Jiang, E.Y.: Bond-order-length-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependent of nanosolid. J. Phys. Condens. Mater. 14, 7781–7795 (2002)

    Article  Google Scholar 

  61. Tan, E.P.S., Zhu, Y., Yu, T., Dai, L., Sow, C.H., Tan, V.B.C., Lim, C.T.: Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 90, 163112(1–3) (2007)

    Google Scholar 

  62. Timoshenko, P.S., Young, D.H.: Elements of Strength of Materials, 5th edn. Van Nostrand, Tokyo (1981)

    Google Scholar 

  63. Timoshenko, P.S., Young, D.H., Weaver, W. Jr.: Vibration Problems in Engineering, 4th edn. Wiley, New York (1974)

    Google Scholar 

  64. Tohmyoh, H., Imaizumi, T., Hayashi, H., Saka, M.: Welding of Pt nanowires by Joule heating. Scr. Mater. 57, 953–956 (2007)

    Article  Google Scholar 

  65. Tohmyoh, H., Yamanobe, K., Saka, M., Utsunomiya, J., Nakamura, T., Nakano, Y.: Analysis of solderless press-fit interconnections during the assembly process. ASME J. Electron. Packag. 130, 031007(1–6) (2008)

    Google Scholar 

  66. Tohmyoh, H., Akanda, M.A.S., Saka, M.: Small-span bending test for determination of elastic–plastic properties of ultrathin Pt wires. Appl. Phys. A (in press)

    Google Scholar 

  67. Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C.S., Tang, M., Wu, S.Y.: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000)

    Article  Google Scholar 

  68. Treacy, M.M., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  69. Vairac, P., Cretin, B.: Scanning microdeformation microscopy in reflection mode. Appl. Phys. Lett. 68, 461–463 (1996)

    Article  Google Scholar 

  70. Walters, D.A., Ericson, L.M., Casavant, M.J., Liu, J., Colbert, D.T., Smith, K.A., Smalley, R.E.: Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999)

    Article  Google Scholar 

  71. Wiesendanger, R.: Scanning Probe Microscopy and Spectroscopy. Cambridge University, Cambridge (1994).

    Book  Google Scholar 

  72. Wolfram, S.: The Mathematica Book, 3rd edn. Wolfram Media and Cambridge University, Cambridge (1996)

    Google Scholar 

  73. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  74. Wu, B., Heidelberg, A., Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005)

    Article  Google Scholar 

  75. Xiong, Q., Duarte, N., Tadigadapa, S., Eklund, P.C.: Force-deflection spectroscopy: a new method to determine the Young’s modulus of nanofilaments. Nano Lett. 6, 1904–1909 (2006)

    Article  Google Scholar 

  76. Yamanaka, K., Nakano, S.: Ultrasonic atomic force microscope with overtone excitation of cantilever. Jpn. J. Appl. Phys. 35, 3787–3792 (1996)

    Article  Google Scholar 

  77. Yamanaka, K., Noguchi, A., Tsuji, T., Koike, T., Goto, T.: Quantitative material characterization by ultrasonic AFM. Surf. Interface Anal. 27, 600–606 (1999)

    Article  Google Scholar 

  78. Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)

    Article  Google Scholar 

  79. Yu, T., Zhao, X., Shen, Z.X., Wu, Y.H., Su, W.H.: Investigation of individual CuO nanorods by polarized micro-Raman scattering. J. Cryst. Growth 268, 590–595 (2004)

    Article  Google Scholar 

  80. Zhong, Q., Inniss, D., Kjoller, K., Elings, V.B.: Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688–L692 (1993)

    Article  Google Scholar 

  81. Zhou, L.G., Huang, H.: Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84,1940–1942 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

M.Muraoka. acknowledges partial support from the Japan Society for the Promotion of Science (JSPS), through the Grant-in-Aid for Scientific Research (B) Grant No. 20360049 and Ms. Y. Ishigami and K. Kanazawa for their help in preparing the manuscript. H.Tohmyoh. acknowledges partial support from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan under Grant-in-Aid for Young Scientists (A) Grant No. 21686012 and Dr. M.A.S. Akanda for his thankful discussion in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Muraoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muraoka, M., Tohmyoh, H. (2010). Evaluation of Mechanical Properties. In: Saka, M. (eds) Metallic Micro and Nano Materials. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15411-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15411-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15410-2

  • Online ISBN: 978-3-642-15411-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics