Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6276))

Abstract

We propose a fuzzy hyper-prototype algorithm in this paper. This approach uses hyperplanes to represent the cluster centers in the fuzzy c-means algorithm. We present the formulation of a hyperplane-based fuzzy objective function and then derive an iterative numerical procedure for minimizing the clustering criterion. We tested the method with data degraded with random noise. The experimental results show that the proposed method is robust to clustering noisy linear structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. of the National Academy of Sciences of the United States of America 95, 14863–14868 (1998)

    Article  Google Scholar 

  2. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. of the National Academy of Sciences of the United States of America 96, 6745–6750 (1999)

    Article  Google Scholar 

  3. Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the number of clusters in a dataset. Genome biology 3, 1465–6914 (2002)

    Article  Google Scholar 

  4. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. of the National Academy of Sciences of the United States of America 96, 2907–2912 (1999)

    Article  Google Scholar 

  5. Bezdek, J.C., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure I. Linear structure: Fuzzy c-lines. SIAM Journal on Applied Mathematics 40(2), 339–357 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Liu, J., Pham, T.D.: Fuzzy hyper-clustering for pattern classification in microarray gene expression data analysis. In: BIOSTEC 2010, pp. 415–418 (2010)

    Google Scholar 

  7. Dhyani, K., Liberti, L.: Mathematical programming formulations for the bottleneck hyperplane clustering problem. In: Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 87–96 (2008)

    Google Scholar 

  8. Bradley, P.S., Mangasarian, O.L.: k-plane clustering. J. Global Optimization 16, 23–32 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  10. Fung, G., Mangasarian, O.L.: Proximal support vector machine classifiers. In: ACM-SIGKDD-KDD 2001, pp. 77–86 (2001)

    Google Scholar 

  11. Glenn, O.L.M., Fung, M.: Multicategory proximal support vector machine classifiers. Machine Learning 59, 77–97 (2005)

    Article  MATH  Google Scholar 

  12. Mangasarian, O.L., Wild, E.W.: Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans Pattern Anal. Mach. Intell. 28, 69–74 (2006)

    Article  Google Scholar 

  13. Yang, X., Chen, S., Chen, B., Pan, Z.: Proximal support vector machine using local information. Neurocomputing (in-print)

    Google Scholar 

  14. Ghorai, S., Mukherjee, A., Dutta, P.K.: Nonparallel plane proximal classifier. Signal Processing 89, 510–522 (2009)

    Article  MATH  Google Scholar 

  15. Bezdek, J.C., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure ii. fuzzy c-varieties and convex combinations thereof. SIAM J. Applied Mathematics 40(2), 358–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Leski, J.M.: Fuzzy c-varieties/elliptotypes clustering in reproducing kernel hilbert space. Fuzzy Sets and Systems 141(2), 259–280 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Honda, K., Ichihashi, H.: Fuzzy local independent component analysis with external criteria and its application to knowledge discovery in databases. International Journal of Approximate Reasoning 42(3), 159–173 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Honda, K., Ichihashi, H.: Component-wise robust linear fuzzy clustering for collaborative filtering. International Journal of Approximate Reasoning 37(2), 127–144 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1945–1959 (2005)

    Article  Google Scholar 

  20. Ding, C., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factorization and spectral clustering. In: Proc. SIAM Data Mining Conf., pp. 606–610 (2005)

    Google Scholar 

  21. Mangasarian, O.L.: Arbitrary-norm separating plane. Operations Research Letters 24(1-2), 15–23 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J., Pham, T.D. (2010). Fuzzy Hyper-Prototype Clustering. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2010. Lecture Notes in Computer Science(), vol 6276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15387-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15387-7_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15386-0

  • Online ISBN: 978-3-642-15387-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics