Skip to main content

Generalized Derivative Based Kernelized Learning Vector Quantization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6283))

Abstract

We derive a novel derivative based version of kernelized Generalized Learning Vector Quantization (KGLVQ) as an effective, easy to interpret, prototype based and kernelized classifier. It is called D-KGLVQ and we provide generalization error bounds, experimental results on real world data, showing that D-KGLVQ is competitive with KGLVQ and the SVM on UCI data and additionally show that automatic parameter adaptation for the used kernels simplifies the learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research 3, 463–482 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biehl, M., Hammer, B., Schleif, F.M., Schneider, P., Villmann, T.: Stationarity of matrix relevance learning vector quantization. Machine Learning Reports 3, 1–17 (2009) ISSN:1865-3960, http://www.uni-leipzig.de/~compint/mlr/mlr_01_2009.pdf

    Google Scholar 

  3. Bishop, C.: Pattern Recognition and Machine Learning. Springer, NY (2006)

    MATH  Google Scholar 

  4. Blake, C., Merz, C.: UCI repository of machine learning databases. Department of Information and Computer Science. University of California, Irvine (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

  5. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, A.: Margin analysis of the LVQ algorithm. In: Proc. NIPS 2002, pp. 462–469 (2002)

    Google Scholar 

  6. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)

    Article  Google Scholar 

  7. Hammer, B., Villmann, T.: Mathematical aspects of neural networks. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks (ESANN 2003), d-side, Brussels, Belgium, pp. 59–72 (2003)

    Google Scholar 

  8. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995) (Second Extended Edition 1997)

    Google Scholar 

  9. Qin, A.K., Suganthan, P.N.: A novel kernel prototype-based learning algorithm. In: Proc. of ICPR’04, pp. 2621–2624 (2004)

    Google Scholar 

  10. Sato, A.S., Yamada, K.: Generalized learning vector quantization. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 423–429. MIT Press, Cambridge (1995)

    Google Scholar 

  11. Schleif, F.M., Villmann, T., Kostrzewa, M., Hammer, B., Gammerman, A.: Cancer informatics by prototype-networks in mass spectrometry. Artificial Intelligence in Medicine 45, 215–228 (2009)

    Article  Google Scholar 

  12. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation (to appear)

    Google Scholar 

  13. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15, 1589–1604 (2003)

    Article  MATH  Google Scholar 

  14. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis and Discovery. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  15. Simmuteit, S., Schleif, F.M., Villmann, T., Elssner, T.: Tanimoto metric in tree-som for improved representation of mass spectrometry data with an underlying taxonomic structure. In: Proc. of ICMLA 2009, pp. 563–567. IEEE Press, Los Alamitos (2009)

    Google Scholar 

  16. Villmann, T., Schleif, F.M.: Functional vector quantization by neural maps. In: Proceedings of Whispers 2009, p. CD (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schleif, FM., Villmann, T., Hammer, B., Schneider, P., Biehl, M. (2010). Generalized Derivative Based Kernelized Learning Vector Quantization. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2010. IDEAL 2010. Lecture Notes in Computer Science, vol 6283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15381-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15381-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15380-8

  • Online ISBN: 978-3-642-15381-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics