Skip to main content

Abstract

We study constraint satisfaction problems on the domain { − 1,1}, where the given constraints are homogeneous linear threshold predicates. That is, predicates of the form sgn(w 1 x 1 + ⋯ + w n x n ) for some positive integer weights w 1, ..., w n . Despite their simplicity, current techniques fall short of providing a classification of these predicates in terms of approximability. In fact, it is not easy to guess whether there exists a homogeneous linear threshold predicate that is approximation resistant or not.

The focus of this paper is to identify and study the approximation curve of a class of threshold predicates that allow for non-trivial approximation. Arguably the simplest such predicate is the majority predicate sgn(x 1 + ⋯ + x n ), for which we obtain an almost complete understanding of the asymptotic approximation curve, assuming the Unique Games Conjecture. Our techniques extend to a more general class of “majority-like” predicates and we obtain parallel results for them. In order to classify these predicates, we introduce the notion of Chow-robustness that might be of independent interest.

This research is supported by the ERC Advanced investigator grant 226203. M. Cheraghchi is supported by the ERC Advanced investigator grant 228021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austrin, P., Håstad, J.: Randomly supported independence and resistance. In: 38th Annual ACM Symposium on Theory of Computation, pp. 483–492 (2009)

    Google Scholar 

  2. Austrin, P., Mossel, E.: Approximation resistant predicates from pairwise independence. Computational Complexity 18(2), 249–271 (2009)

    Article  MathSciNet  Google Scholar 

  3. Chow, C.K.: On the characterization of threshold functions. In: Proceedings of the 2nd Annual Symposium on Switching Circuit Theory and Logical Design, pp. 34–38 (1961)

    Google Scholar 

  4. Dertouzos, M.: Threshold logic: a synthesis approach. MIT Press, Cambridge (1965)

    Google Scholar 

  5. Diakonikolas, I., Servedio, R.A.: Improved approximation of linear threshold functions. In: IEEE Conference on Computational Complexity, pp. 161–172 (2009)

    Google Scholar 

  6. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hast, G.: Beating a random assignment. In: APPROX-RANDOM, pp. 134–145 (2005)

    Google Scholar 

  8. Håstad, J.: Some optimal inapproximability results. Journal of ACM 48, 798–859 (2001)

    Article  MATH  Google Scholar 

  9. Kaplan, K.R., Winder, R.O.: Chebyshev approximation and threshold functions. IEEE Transactions on Electronic Computers EC -14(2), 250–252 (1965)

    Article  Google Scholar 

  10. Kaszerman, P.: A geometric test-synthesis procedure for a threshold device. Information and Control 6(4), 381–398 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  11. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of 34th ACM Symposium on Theory of Computating, pp. 767–775 (2002)

    Google Scholar 

  12. Khot, S., Mossel, E., Kindler, G., O’Donnell, R.: Optimal inapproximability results for Max-Cut and other 2-variable CSPs? In: Proceedings of 45th Annual IEEE Symposium of Foundations of Computer Science, pp. 146–154 (2004)

    Google Scholar 

  13. O’Donnell, R., Servedio, R.A.: The Chow parameters problem. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 517–526 (2008)

    Google Scholar 

  14. O’Donnell, R., Wu, Y.: An optimal SDP algorithm for Max-Cut and equally optimal long code tests. In: Proceedings of 40th ACM Symposium on Theory of Computating, pp. 335–344 (2008)

    Google Scholar 

  15. Schaefer, T.: The complexity of satisfiability problems. In: Conference Record of the Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226 (1978)

    Google Scholar 

  16. Shiganov, I.S.: Refinement of the upper bound of a constant in the remainder term of the central limit theorem. Journal of Soviet mathematics 35, 109–115 (1986)

    Article  Google Scholar 

  17. Winder, R.O.: Threshold logic in artificial intelligence. Artificial Intelligence S-142, 107–128 (1963)

    Google Scholar 

  18. Winder, R.O.: Threshold gate approximations based on Chow parameters. IEEE Transactions on Computers 18(4), 372–375 (1969)

    Article  MathSciNet  Google Scholar 

  19. Zwick, U.: Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 201–210 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheraghchi, M., Håstad, J., Isaksson, M., Svensson, O. (2010). Approximating Linear Threshold Predicates. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics