Skip to main content

Abstract

We prove the existence of a poly(n,m)-time computable pseudorandom generator which “1/poly(n,m)-fools” DNFs with n variables and m terms, and has seed length O(log2 nm ·loglognm). Previously, the best pseudorandom generator for depth-2 circuits had seed length O(log3 nm), and was due to Bazzi (FOCS 2007).

It follows from our proof that a \(1/m^{\tilde O(\log mn)}\)-biased distribution 1/poly(nm)-fools DNFs with m terms and n variables. For inverse polynomial distinguishing probability this is nearly tight because we show that for every m,δ there is a 1/m Ω(log1/δ)-biased distribution X and a DNF φ with m terms such that φ is not δ-fooled by X.

For the case of read-once DNFs, we show that seed length O(logmn ·log1/δ) suffices, which is an improvement for large δ.

It also follows from our proof that a 1/m O(log1/δ)-biased distribution δ-fools all read-once DNF with m terms. We show that this result too is nearly tight, by constructing a \(1/m^{\tilde \Omega(\log 1/\delta)}\)-biased distribution that does not δ-fool a certain m-term read-once DNF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M., Wigderson, A.: Deterministic simulation of probabilistic constand-depth circuits. Advances in Computing Research - Randomness and Computation 5, 199–223 (1989); Preliminary version in Proc. of FOCS 1985

    Google Scholar 

  2. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Random Structures and Algorithms 3(3), 289–304 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Goldreich, O., Mansour, Y.: Almost k-wise independence versus k-wise independence. Information Processing Letters 88(3), 107–110 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bazzi, L.: Minimum Distance of Error Correcting Codes versus Encoding Complexity, Symmetry, and Pseudorandomness. PhD thesis, MIT (2003)

    Google Scholar 

  5. Bazzi, L.: Polylogarithmic independence can fool DNF formulas. In: Proceedings of the 48th IEEE Symposium on Foundations of Computer Science, pp. 63–73 (2007)

    Google Scholar 

  6. Braverman, M.: Poly-logarithmic independence fools AC0 circuits. In: Proceedings of the 24th IEEE Conference on Computational Complexity, pp. 3–8 (2009)

    Google Scholar 

  7. Even, G., Goldreich, O., Luby, M., Nisan, N., Velickovic, B.: Approximations of general independent distributions. In: Proceedings of the 24th ACM Symposium on Theory of Computing, pp. 10–16 (1992)

    Google Scholar 

  8. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Proceedings of the 18th ACM Symposium on Theory of Computing, pp. 6–20 (1986)

    Google Scholar 

  9. Klivans, A., Lee, H., Wan, A.: Mansour’s conjecture is true for random DNF formulas. Technical Report TR10-023, Electronic Colloquium on Computational Complexity (2010)

    Google Scholar 

  10. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier transform and learnability. Journal of the ACM 40(3), 607–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Linial, N., Nisan, N.: Approximate inclusion-exclusion. Combinatorica 10(4), 349–365 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Luby, M., Velickovic, B.: On deterministic approximation of DNF. Algorithmica 16(4/5), 415–433 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Luby, M., Velickovic, B., Wigderson, A.: Deterministic approximate counting of depth-2 circuits. In: Proceedings of the 2nd ISTCS, pp. 18–24 (1993)

    Google Scholar 

  14. Mak, L.: Parallelism always helps. Manuscript (1993)

    Google Scholar 

  15. Mansour, Y.: An o(n loglogn) learning algorithm for DNF under the uniform distribution. Journal of Computer and System Sciences 50(3), 543–550 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. SIAM Journal on Computing 22(4), 838–856 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nisan, N.: Pseudorandom bits for constant depth circuits. Combinatorica 12(4), 63–70 (1991)

    Article  Google Scholar 

  18. O’Donnell, R.: Lecture notes for analysis of boolean functions (2007), http://www.cs.cmu.edu/~odonnell/boolean-analysis

  19. Razborov, A.: A Simple Proof of Bazzi’s Theorem. ACM Trans. Comput. Theory 1(1), 1–5 (2009)

    Article  MathSciNet  Google Scholar 

  20. Viola, E., Wigderson, A.: Norms, XOR lemmas, and lower bounds for polynomials and protocols. Theory of Computing 4(1), 137–168 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De, A., Etesami, O., Trevisan, L., Tulsiani, M. (2010). Improved Pseudorandom Generators for Depth 2 Circuits . In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics