Advertisement

Good Identification Practice

  • Boris L. MilmanEmail author
Chapter
  • 925 Downloads

Abstract

Good identification practice is considered as an underlying system of particular requirements and guidelines with regard to laboratories, personnel, instruments, and methods directed to quality assurance and quality control of chemical identification (qualitative analysis). Terminological standardization and “metrologization” of qualitative analysis are stated to be general prerequisites for consistency and comparability of identification results between analytical/bioanalytical chemists and laboratories. Requirements and guidelines concerning quality assurance and control of identification procedures which are contained in official laboratory guidances are considered. According to principles of good identification practice, criteria for detection and identification in target methods, screening and confirmatory ones, should be formulated and validated. Accepted levels of false result rates are established. In non-target/unknown analysis, approaches to identification should be validated, which include evaluation of pertinent databases, spectral libraries, predictor programs, identification/classification algorithms, and so on. Interlaboratory studies provide assessment of laboratory performances and evaluation (validation) of identification methods/approaches.

Keywords

Proficiency Test System Suitability Instrumental Parameter Chemical Identification False Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Taylor JK (1987) Quality assurance of chemical measurements. CRC Press, Boca Raton, FLGoogle Scholar
  2. 2.
    Hibbert DB (2007) Quality assurance for the analytical chemistry laboratory. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Konieczka P, Namieśnik J (2009) Quality assurance and quality control in the analytical chemical laboratory. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  4. 4.
    ISO/IEC Standard 17025 (1999) General requirements for the competence of testing and calibration laboratoriesGoogle Scholar
  5. 5.
    OECD Principles of good laboratory practice (1998) OECD, Paris. http://indiaglp.gov.in/docs/No1.pdf. Accessed 17 June 2010
  6. 6.
    IUPAC Compendium on analytical nomenclature (the Orange Book, 1997). http://old.iupac.org/publications/analytical_compendium. Accessed 17 June 2010
  7. 7.
    IUPAC Compendium of chemical terminology (the Gold Book). http://goldbook.iupac.org. Accessed 17 June 2010
  8. 8.
    IUPAC Compendium of chemical terminology (the Gold Book). http://goldbook.iupac.org/Q04973.html. Accessed 17 June 2010
  9. 9.
    Wright SE, Strehlow RA (1995) Standardizing and harmonizing terminology: theory and practice. ASTM, Philadelphia, PACrossRefGoogle Scholar
  10. 10.
    Zschunke A (2000) Reference materials in analytical chemistry: a guide for selection and use. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Ulberth F (2006) Certified reference materials for inorganic and organic contaminants in environmental matrices. Anal Bioanal Chem 386:1121–1136CrossRefGoogle Scholar
  12. 12.
  13. 13.
    NIST http://www.nist.gov/index.html. Accessed 12 Oct 2009
  14. 14.
    LGC http://www.lgc.co.uk. Accessed 12 Oct 2009
  15. 15.
    BAM http://www.bam.de/index_en.htm. Accessed 12 Oct 2009
  16. 16.
    UNIIM http://www.uniim.ru/content/view/81/167. Accessed 12 Oct 2009
  17. 17.
    VNIIM http://www.vniim.ru/index.en.html. Accessed 12 Oct 2009
  18. 18.
    NMIJ http://www.nmij.jp/english. Accessed 12 Oct 2009
  19. 19.
    SOFT/AAFS Forensic Laboratory Guidelines (2006) http://www.soft-tox.org/docs/Guidelines%202006%20Final.pdf. Accessed 17 May 2010
  20. 20.
    ChemExper http://www.chemexper.com. Accessed 15 June 2010
  21. 21.
    CAS Chemcats. http://www.cas.org/expertise/cascontent/chemcats.html. Accessed 15 June 2010
  22. 22.
    ZINC http://zinc.docking.org. Accessed 23 May 2010
  23. 23.
    PubChem http://pubchem.ncbi.nlm.nih.gov. Accessed 6 July 2009
  24. 24.
    FAO/WHO Codex Alimentarius. Guidelines on the use of mass spectrometry (MS) for identification, confirmation and quantitative determination of residues (2005) CAC/GL 56-2005. http://www.codexalimentarius.net/web/standard_list.jsp. Accessed 16 May 2010
  25. 25.
    Proteomics standards research group (sPRG). http://www.abrf.org/index.cfm/group.show/ProteomicsStandardsResearchGroup.47.htm. Accessed 17 June 2010
  26. 26.
    Valcárcel M, Cárdenas S, Barceló D, Buydens L, Heydorn K, Karlberg B, Klemm K, Lendl B, Milman B, Neidhart B, Ríos A, Stephany R, Townshend A, Zschunke A (2002) Metrology of qualitative chemical analysis. Report EUR 20605. EC, LuxembourgGoogle Scholar
  27. 27.
    Ríos A, Barceló D, Buydens L, Cárdenas S, Heydorn K, Karlberg B, Klemm K, Lendl B, Milman B, Neidhart B, Stephany R, Townshend A, Valcárcel M, Zschunke A (2003) Quality assurance of qualitative analysis in the framework of the European project ‘MEQUALAN’. Accred Qual Assur 8:68–77CrossRefGoogle Scholar
  28. 28.
    Allen MW (2007) Wavelength accuracy – measurement and effect on performance in UV-Visible spectrophotometry. Thermo Technical Note 51171. http://www.sorvall.com/eThermo/CMA/PDFs/Articles/articlesFile_1181.pdf. Accessed 12 Oct 2009
  29. 29.
    NIST SRM archive https://www-s.nist.gov/srmors/certArchive.cfm. Accessed 12 Oct 2009Google Scholar
  30. 30.
    Starna NIST Traceable UV/Vis/NIR Reference Sets. 2008 Catalog. http://starnacells.com/d_download/RefCat.pdf. Accessed 12 Oct 2009
  31. 31.
    Burgess C, Hammond J (2007) Wavelength standards for the near-infrared spectral region. Spectroscopy. Apr 1. http://spectroscopyonline.findanalytichem.com/spectroscopy/Near-IR + Spectroscopy/Wavelength-Standards-for-the-Near-Infrared-Spectra/ArticleStandard/Article/detail/421824. Accessed 12 Oct 2009
  32. 32.
    Clarke FJJ, Birch JR, Chunnilall CJ, Smart MP (2002) FTIR measurements – standards and accuracy. Vib Spectrosc 30:25–29CrossRefGoogle Scholar
  33. 33.
    Gupta D, Wang L, Hanssen LM, Hsia JJ, Datla RU (1995) Polystyrene films for calibrating the wavelength scale of infrared spectrophotometers - SRM 1921. NIST Special Publication 260-122. http://ts.nist.gov/MeasurementServices/ReferenceMaterials/upload/SP260-122.pdf. Accessed 12 Oct 2009
  34. 34.
    Gordon AJ, Ford RA (1972) The chemist’s companion: a handbook of practical data, techniques and references. Wiley, New YorkGoogle Scholar
  35. 35.
  36. 36.
    Pramanik BN, Ganguly AK, Gross ML (eds) (2002) Applied electrospray mass spectrometry. Marcel Dekker, New YorkGoogle Scholar
  37. 37.
  38. 38.
  39. 39.
    Garofolo F (2004) LC–MS instrument calibration. In: Chan CC, Lee YC, Lam H (eds) Analytical method validation and instrument performance verification. Wiley, Hoboken, NJGoogle Scholar
  40. 40.
    Protea Overview of Peptide Standards for Mass Spectrometry. http://dichrom.com/downloads/Protea/Phosphopeptide%20Standards_web.pdf. Accessed 6 Nov 2009
  41. 41.
    Barry EF, Grob RL (2007) Columns for gas chromatography: performance and selection. Wiley, Hoboken, NJCrossRefGoogle Scholar
  42. 42.
    Sander LC, Wise SA (2003) A new standard reference material for column evaluation in reversed-phase liquid chromatography. J Sep Sci 26:283–294CrossRefGoogle Scholar
  43. 43.
    Smith RM, Dube S (2005) A certified reference material for HPLC. Chromatographia 61:325–332CrossRefGoogle Scholar
  44. 44.
    Feldsine P, Abeyta C, Andrews WH (2002) AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. J AOAC Int 85:1187–1200Google Scholar
  45. 45.
    FDA Center for Veterinary Medicine Guidance for Industry (2003) Mass spectrometry for confirmation of the identity of animal drug residues. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM052658.pdf. Accessed 18 May 2010
  46. 46.
    Soboleva E, Ambrus Á (2004) Application of a system suitability test for quality assurance and performance optimisation of a gas chromatographic system for pesticide residue analysis. J Chromatogr A 1027:55–65CrossRefGoogle Scholar
  47. 47.
    Careri M, Mangia A (2006) Validation and qualification: the fitness for purpose of mass spectrometry-based analytical methods and analytical systems. Anal Bioanal Chem 386:38–45CrossRefGoogle Scholar
  48. 48.
    Chan CC, Lee YC, Lam H, Zhang XM (2004) Analytical method validation and instrument performance verification. Wiley, Hoboken, NJCrossRefGoogle Scholar
  49. 49.
    Hardcastle WA (1998) Qualitative analysis: a guide to best practice. LGC. http://www.rsc.org/ebooks/archive/free/BK9780854044627/BK9780854044627-00001.pdf. Accessed 18 May 2010
  50. 50.
    Cárdenas S, Valcárcel M (2005) Analytical features in qualitative analysis. Trends Anal Chem 24:477–487CrossRefGoogle Scholar
  51. 51.
    Ríos A, Téllez H (2005) Reliability of binary analytical responses. Trends Anal Chem 24:509–515CrossRefGoogle Scholar
  52. 52.
    Plata MR, Pérez-Cejuela N, Rodríguez J, Ríos Á (2005) Development and validation strategies for qualitative spot tests: application to nitrite control in waters. Anal Chim Acta 537:223–230CrossRefGoogle Scholar
  53. 53.
    Hassler S, Donze G, Esch PM, Eschbach B, Hartmann H, Hutter L, Timm U, Saxer HP (2006) Good laboratory practice (GLP) – guidelines for the acquisition and processing of electronic raw data in a GLP environment. Qual Assur J 10:3–14CrossRefGoogle Scholar
  54. 54.
    ALACC Guide (2007) How to meet ISO 17025 requirements for method verification. http://www.aoac.org/alacc_guide_2008.pdf. Accessed 18 May 2010
  55. 55.
    EURACHEM Guide (1998) The fitness for purpose of analytical methods: a laboratory guide to method validation and related topics. http://www.eurachem.org/guides/pdf/valid.pdf. Accessed 18 May 2010
  56. 56.
    Christopher B (2000) Valid analytical methods and procedures. The Royal Society of Chemistry, CambridgeGoogle Scholar
  57. 57.
    Thompson M, Ellison SLR, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74:835–855CrossRefGoogle Scholar
  58. 58.
    De Bièvre P, Günzler H (eds) (2005) Validation in chemical measurement. Springer, BerlinGoogle Scholar
  59. 59.
    González AG, Herrador MÁ (2007) A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends Anal Chem 26:227–238CrossRefGoogle Scholar
  60. 60.
    Gonzalez C, Prichard E, Spinelli S, Gille J, Touraud E (2007) Validation procedure for existing and emerging screening methods. Trends Anal Chem 26:315–322CrossRefGoogle Scholar
  61. 61.
    Trullols Soler E (2006) Validation of qualitative analytical methods. Thesis Universitat Rovira i Virgili, Tarragona. http://www.tdr.cesca.es/TESIS_URV/AVAILABLE/TDX-0525106-095917//EstherTrullols.pdf. Accessed 18 June 2010
  62. 62.
    Commission Decision 2002/657/EC, August 12, 2002, implementing Council Directive 96/23/EC concerning the performance of analytical methods and interpretation of results (2002) Off J Eur Commun L 221:8–36. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:221:0008:0036:EN:PDF. Accessed 14 May 2010
  63. 63.
    Method validation and quality control procedures for pesticide residues analysis in food and feed (2009) Document No. SANCO/10684/2009. http://ec.europa.eu/food/plant/protection/resources/qualcontrol_en.pdf. Accessed 14 May 2010
  64. 64.
    FDA Guidance for industry (2001) Bioanalytical method validation. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf. Accessed 18 June 2010
  65. 65.
    Stüber M, Reemtsma T (2004) Evaluation of three calibration methods to compensate matrix effects in environmental analysis with LC–ESI–MS. Anal Bioanal Chem 378:910–916CrossRefGoogle Scholar
  66. 66.
    Lehotay SJ, Gates RA (2009) Blind analysis of fortified pesticide residues in carrot extracts using GC–MS to evaluate qualitative and quantitative performance. J Sep Sci 32:3706–3719CrossRefGoogle Scholar
  67. 67.
    Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521–D526CrossRefGoogle Scholar
  68. 68.
    Wishart DS, Knox C, Guo AC et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610CrossRefGoogle Scholar
  69. 69.
    Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211–221CrossRefGoogle Scholar
  70. 70.
    UKAS Accreditation for Chemical Laboratories. http://www.bvsde.paho.org/bvsacd/cd52/accredi.pdf. Accessed 18 June 2010
  71. 71.
    Thompson M, Ellison SLR, Wood R (2006) The International Harmonised Protocol for the proficiency testing of analytical chemistry laboratories. Pure Appl Chem 78:145–196CrossRefGoogle Scholar
  72. 72.
    Analytical Methods Committee (2007) Handling false negatives, false positives and reporting limits in analytical proficiency tests. Analyst 122:495–497CrossRefGoogle Scholar
  73. 73.
    Ellison SLR, Fearn T (2005) Characterising the performance of qualitative analytical methods: Statistics and terminology. Trends Anal Chem 24:468–476CrossRefGoogle Scholar
  74. 74.
    Schilling P, Powilleit M, Uhlig S (2006) Macrozoobenthos interlaboratory comparison on taxonomical identification and counting of marine invertebrates in artificial sediment samples including testing various statistical methods of data evaluation. Accred Qual Assur 11:422–429CrossRefGoogle Scholar
  75. 75.
    Dubey V, Velikeloth S, Sliwakowski M, Mallard G (2009) Official proficiency tests of the organisation for the prohibition of chemical weapons: current status and future directions. Accred Qual Assur 14:431–437CrossRefGoogle Scholar
  76. 76.
  77. 77.
    Dawson PH, Sun WF (1984) A round robin on the reproducibility of standard operating conditions for the acquisition of library MS/MS spectra using triple quadrupoles. Int J Mass Spectrom Ion Process 55:155–170CrossRefGoogle Scholar
  78. 78.
    Chujo R, Hatada K, Kitamaru R, Kitayama T, Sato H, Tanaka Y (1987) NMR measurement of identical polymer samples by round robin method. I. Reliability of chemical shift and signal intensity measurements. Polym J 19:413–424CrossRefGoogle Scholar
  79. 79.
    Arbogast B, Budde WL, Deinzer M, Dougherty RC, Eichelberger J, Foltz RD, Grimm CC, Hites RA, Sakashita C, Stemmler E (1990) Interlaboratory comparison of limits of detection in negative chemical ionization mass spectrometry. Org Mass Spectrom 25:191–196CrossRefGoogle Scholar
  80. 80.
    Bogusz M, Franke JP, De Zeeuw RA, Erkens M (1993) An overview on the standardization of chromatographic methods for screening analysis in toxicology by means of retention indices and secondary standards. Fresenius J Anal Chem 347:73–81CrossRefGoogle Scholar
  81. 81.
    Welch MJ, Sniegoski LT, Allgood CC (1993) Interlaboratory comparison studies on the analysis of hair for drugs of abuse. Forensic Sci Int 63:295–303CrossRefGoogle Scholar
  82. 82.
    Montagna M, Polettini A, Stramesi C, Groppi A, Vignali C (2002) Hair analysis for opiates, cocaine and metabolites. Evaluation of a method by interlaboratory comparison. Forensic Sci Int 128:79–83CrossRefGoogle Scholar
  83. 83.
    Jurado C, Sachs H (2003) Proficiency test for the analysis of hair for drugs of abuse, organized by the Society of Hair Testing. Forensic Sci Int 133:175–178CrossRefGoogle Scholar
  84. 84.
    Medina-Pastor P, Rodríguez-Torreblanca C, Andersson A, Fernández-Alba AR (2010) European Commission proficiency tests for pesticide residues in fruits and vegetables. Trends Anal Chem 29:70–83CrossRefGoogle Scholar
  85. 85.
    Rossmann A, Koziet J, Martin GJ, Dennis MJ (1997) Determination of the carbon-13 content of sugars and pulp from fruit juices by isotope-ratio mass spectrometry (internal reference method). A European interlaboratory comparison. Anal Chim Acta 340:21–29CrossRefGoogle Scholar
  86. 86.
    Wong DCL, Van Compernolle R, Chai EY, Fitzpatrick RD, Bover WJ (1997) A multi-laboratory evaluation of analytical methods for estimating bioconcentratable contaminants in effluents, tissues and sediments. Environ Toxicol Chem 16:617–624CrossRefGoogle Scholar
  87. 87.
    Badia R, De la Torre R, Corcione S, Segura J (1998) Analytical approaches of European Union laboratories to drugs of abuse analysis. Clin Chem 44:790–799Google Scholar
  88. 88.
    De Boer WJ, Van der Voet H, De Ruig WG, Van Rhijn JA, Cooper KM, Kennedy DG, Patel RKP, Porter S, Reuvers T, Marcos V, Munoz P, Bosch J, Rodriguez P, Grases JM (1999) Optimizing the balance between false positive and false negative error probabilities of confirmatory methods for the detection of veterinary drug residues. Analyst 124:109–114CrossRefGoogle Scholar
  89. 89.
    Silva-Wilkinson RA, Burkhard LP, Sheedy BR, DeGraeve GM, Lordo RA (1999) A simple comparison of mass spectral search results and implications for environmental screening analyses. Arch Environ Contam Toxicol 36:109–114CrossRefGoogle Scholar
  90. 90.
    Milman BL (2005) Identification of chemical compounds. Trends Anal Chem 24:493–508CrossRefGoogle Scholar
  91. 91.
    Rosal C, Betowski D, Romano J, Neukom J, Wesolowski D, Zintek L (2009) The development and inter-laboratory verification of LC–MS libraries for organic chemicals of environmental concern. Talanta 79:810–817CrossRefGoogle Scholar
  92. 92.
    Guttman CM, Wetzel SJ, Blair WR, Fanconi BM, Girard JE, Goldschmidt RJ, Wallace WE, Vanderhart DL (2001) NIST-sponsored interlaboratory comparison of polystyrene molecular mass distribution obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: statistical analysis. Anal Chem 73:1252–1262CrossRefGoogle Scholar
  93. 93.
    Guttman CM, Wetzel SJ, Flynn KM, Fanconi BM, VanderHart DL, Wallace WE (2005) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry interlaboratory comparison of mixtures of polystyrene with different end groups: statistical analysis of mass fractions and mass moments. Anal Chem 77:4539–4548CrossRefGoogle Scholar
  94. 94.
    Nagahata R, Shimada K, Kishine K, Sato H, Matsuyama S, Togashi H, Kinugasa S (2007) Interlaboratory comparison of average molecular mass and molecular mass distribution of a polystyrene reference material determined by MALDI–TOF mass spectrometry. Int J Mass Spectrom 263:213–221CrossRefGoogle Scholar
  95. 95.
    Boone CM, Manetto G, Tagliaro F, Waterval JCM, Underberg WJM, Franke JP, De Zeeuw RA, Ensing K (2002) Interlaboratory reproducibility of mobility parameters in capillary electrophoresis for substance identification in systematic toxicological analysis. Electrophoresis 23:67–73CrossRefGoogle Scholar
  96. 96.
    Faksness LG, Da1ing PS, Hansen AB (2002) Round robin study – oil spill identification. Environ Forensics 3:279–291Google Scholar
  97. 97.
    Sørheim KR, Faksness LG, Almås IK (2008) Round robin oil comparison study – 2008. SINTEF Report SINTEF A8539. http://www.sintef.no/Home/Publications/Publication?page=28511. Accessed 19 June 2010
  98. 98.
    Niewoehner L, Andrasko J, Biegstraaten J, Gunaratnam L, Steffen S, Uhlig S, Antoni S (2008) GSR2005 – Continuity of the ENFSI proficiency test on identification of GSR by SEM/EDX. J Forensic Sci 53:162–167CrossRefGoogle Scholar
  99. 99.
    Appelqvist LÅ (2004) Harmonization of methods for analysis of cholesterol oxides in foods – the first portion of a long road toward standardization: interlaboratory study. J AOAC Int 87:511–519Google Scholar
  100. 100.
    Taha MK, Alonso JM, Cafferkey M et al (2005) Interlaboratory comparison of PCR-based identification and genogrouping of Neisseria meningitidis. J Clin Microbiol 43:144–149CrossRefGoogle Scholar
  101. 101.
    De Baere T, Van Keerberghen A, Van Hauwe P, De Beenhouwer H, Boel A, Verschraegen G, Claeys G, Vaneechoutte M (2005) An interlaboratory comparison of ITS2–PCR for the identification of yeasts, using the ABI Prism 310 and CEQ8000 capillary electrophoresis systems. BMC Microbiol 5:14. doi: 10.1186/1471-2180-5-14 CrossRefGoogle Scholar
  102. 102.
    Gaudin V, Cadieu N, Sanders P (2005) Results of a European proficiency test for the detection of streptomycin/dihydrostreptomycin, gentamicin and neomycin in milk by ELISA and biosensor methods. Anal Chim Acta 529:273–283CrossRefGoogle Scholar
  103. 103.
    Kapp EA, Schütz F, Connolly LM, Chakel JA, Meza JE, Miller CA, Fenyo D, Eng JK, Adkins JN, Omenn GS, Simpson RJ (2005) An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5:3475–3490CrossRefGoogle Scholar
  104. 104.
    Andrews PC, Arnott DP, Gawinowicz MA, Kowalak JA, Lane WS, Lilley KS, Martin LT, Stein SE. ABRF-sPRG2006 Study: A proteomics standard. http://www.abrf.org/ResearchGroups/ProteomicsStandardsResearchGroup/EPosters/ABRFsPRGStudy2006poster.pdf. Accessed 7 June 2010
  105. 105.
    Andrews PC, Arnott DP, Gawinowicz MA, Kowalak JA, Lane WS, Lilley KS, Loo RRO, Martin LT, Stein SE. sPRG2007: Development and evaluation of a phosphoprotein standard. http://www.abrf.org/ResearchGroups/ProteomicsStandardsResearchGroup/EPosters/Gawinowicz_sPRG07_032707.pdf. Accessed 7 June 2010
  106. 106.
    Bell AW, Deutsch EW, Au CE, Kearney RE, Beavis R, Sechi S, Nilsson T, Bergeron JJ, HUPO Test Sample Working Group (2009) A HUPO test sample study reveals common problems in mass spectrometry-based proteomics. Nat Methods 6:423–430CrossRefGoogle Scholar
  107. 107.
    Van Hengel AJ, Capelletti C, Brohee M, Anklam E (2006) Validation of two commercial lateral flow devices for the detection of peanut proteins in cookies: interlaboratory study. J AOAC Int 89:462–468Google Scholar
  108. 108.
    García-González DL, Viera M, Tena N, Aparicio R (2007) Evaluation of the methods based on triglycerides and sterols for the detection of hazelnut oil in olive oil. Grasas y Aceites 58:344–350Google Scholar
  109. 109.
    Van Raamsdonk LWD, Hekman W, Vliege JM, Pinckaers V, Van der Voet H, Van Ruth SM (2008) The 2008 Dutch NRL / IAG proficiency test for detection of animal proteins in feed. RIKILT – Institute of Food Safety Report 2008.007. RIKILT, Wageningen. http://library.wur.nl/way/bestanden/clc/1876397.pdf. Accessed 6 Nov 2010
  110. 110.
    Van Keulen H (2009) Gas chromatography/mass spectrometry methods applied for the analysis of a Round Robin sample containing materials present in samples of works of art. Int J Mass Spectrom 284:162–169CrossRefGoogle Scholar
  111. 111.
    Paulovich AG, Billheimer D, Ham AJ et al (2010) Interlaboratory study characterizing a yeast performance standard for benchmarking LC–MS platform performance. Mol Cell Proteomics 9:242–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.D.I. Mendeleyev Inst. for Metrology (VNIIM) and Cent. for Ecol. Saf. of Russ. Acad. of SciencesSt. PetersburgRussia

Personalised recommendations