Advertisement

Principles of Identification

  • Boris L. MilmanEmail author
Chapter
  • 968 Downloads

Abstract

In this initial chapter, concepts and terms related to qualitative chemical analysis are outlined and discussed. Chemical identification is defined as assigning an analyte to one from known chemical compounds or a group/class of compounds. General principles for identification through the use of chemical tests and instrumental measurements are formulated. Qualitative analytical procedures and approaches to implement them are classified. Components of identification procedures are further described. Objects for identification such as compounds, substances, and analyzed samples are discussed in great detail, including identifiers of the objects. Known chemical substances, which amount to more than 110 million entities, are statistically reviewed. Finally, two key metrological issues, traceability in identification operations and qualitative scale of measurements, are discussed.

Keywords

Nominal Scale Chemical Identification Chemical Database Butyl Benzene Classification Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Currie LA (1995) Nomenclature in evaluation of analytical methods, including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl Chem 67:1699–1723CrossRefGoogle Scholar
  2. 2.
    Komar’ NP (1955) Basics of qualitative chemical analysis. Book 1: Ionic equilibria (In Russian). Kharkov University Publisher, KharkovGoogle Scholar
  3. 3.
    Ellison SLR, Gregory S, Hardcastle WA (1998) Quantifying uncertainty in qualitative analysis. Analyst 123:1155–1161CrossRefGoogle Scholar
  4. 4.
    Hartstra J, Franke JP, De Zeeuw RA (2000) How to approach substance identification in qualitative bioanalysis. J Chromatogr B 739:125–137CrossRefGoogle Scholar
  5. 5.
    Valcárcel M, Cárdenas S, Gallego M (2000) Qualitative analysis revisited. Crit Rev Anal Chem 30:345–361CrossRefGoogle Scholar
  6. 6.
    Bethem R, Boison J, Gale J, Heller D, Lehotay S, Loo J, Musser S, Price P, Stein S (2003) Establishing the fitness for purpose of mass spectrometric methods. J Am Soc Mass Spectrom 14:528–541CrossRefGoogle Scholar
  7. 7.
    Ríos A, Barceló D, Buydens L, Cárdenas S, Heydorn K, Karlberg B, Klemm K, Lendl B, Milman B, Neidhart B, Stephany R, Townshend A, Valcárcel M, Zschunke A (2003) Quality assurance of qualitative analysis in the framework of ‘MEQUALAN’ European project. Accred Qual Assur 8:68–77CrossRefGoogle Scholar
  8. 8.
    De Zeeuw RA (2004) Substance identification: the weak link in analytical toxicology. J Chromatogr B 811:3–12Google Scholar
  9. 9.
    Lehotay SJ, Mastovska K, Amirav A, Fialkov AB, Martos PA, de Kok A, Fernández-Alba AR (2008) Identification and confirmation of chemical residues in food by chromatography-mass spectrometry and other techniques. Trends Anal Chem 27:1070–1090CrossRefGoogle Scholar
  10. 10.
    Modern qualitative analysis (2005) Trends Anal Chem 24:461–555Google Scholar
  11. 11.
    Commission Decision 2002/657/EC, August 12, 2002, implementing Council Directive 96/23/EC concerning the performance of analytical methods and interpretation of results (2002) Off J Eur Commun L 221:8–36Google Scholar
  12. 12.
    Valcárcel M, Cárdenas S, Barceló D, Buydens L, Heydorn K, Karlberg B, Klemm K, Lendl B, Milman B, Neidhart B, Ríos A, Stephany R, Townshend A, Zschunke A (2002) Metrology of qualitative chemical analysis. Report EUR 20605. EC, LuxembourgGoogle Scholar
  13. 13.
    Milman BL, Konopelko LA (2000) Identification of chemical substances by testing and screening of hypotheses. I. General. Fresenius J Anal Chem 367:621–628CrossRefGoogle Scholar
  14. 14.
    Milman BL, Kovrizhnych MA (2000) Identification of chemical substances by testing and screening of hypotheses. II. Determination of impurities in n-hexane and naphthalene. Fresenius J Anal Chem 367:629–634CrossRefGoogle Scholar
  15. 15.
    Milman BL (2002) A Procedure for decreasing uncertainty in the identification of chemical compounds based on their literature citation and cocitation. Two case studies. Anal Chem 74:1484–1492CrossRefGoogle Scholar
  16. 16.
    Mil'man BL, Konopel'ko LA (2004) Uncertainty of qualitative chemical analysis: general methodology and binary test methods. J Anal Chem 59:1128–1141CrossRefGoogle Scholar
  17. 17.
    Milman BL (2005) Identification of chemical compounds. Trends Anal Chem 24:493–508CrossRefGoogle Scholar
  18. 18.
    Milman BL (2005) Literature-based generation of hypotheses on chemical composition using database co-occurrence of chemical compounds. J Chem Inf Model 45:1153–1158CrossRefGoogle Scholar
  19. 19.
    Milman BL (2008) Introduction to chemical identification (In Russian). VVM, Saint PetersburgGoogle Scholar
  20. 20.
    Princeton University WordNet. http://wordnetweb.princeton.edu/perl/webwn?s=identify. Accessed 11 Oct 2009
  21. 21.
    Valcárcel M, Cárdenas S, Simonet BM, Carrillo-Carrión C (2007) Principles of qualitative analysis in the chromatographic context. J Chromatogr A 1158:234–240CrossRefGoogle Scholar
  22. 22.
    Kunze UR, Schwedt G (1996) Grundlagen der qualitativen und quantitativen Analyse (In German). Georg Thieme, StuttgartGoogle Scholar
  23. 23.
    Otto M (2000) Analytische Chemie. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Zolotov YA, Ivanov VM, Amelin VG (2002) Chemical test methods of analysis. Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Bentley KW (1963) Elucidation of organic structures by physical and chemical methods. Wiley, New YorkGoogle Scholar
  26. 26.
    Eggins BR (2002) Chemical sensors and biosensors. Wiley, ChichesterGoogle Scholar
  27. 27.
    Guide to the expression of uncertainty in measurement (1993) ISO, GenevaGoogle Scholar
  28. 28.
    NIH PubChem. http://pubchem.ncbi.nlm.nih.gov. Accessed 11 October 2009
  29. 29.
    Compendium of Pesticide Common Names. http://www.alanwood.net/pesticides/index.html. Accessed 11 Oct 2009
  30. 30.
    Banks JE (1976) Naming organic compounds: a programmed introduction to organic chemistry. Saunders, Philadelphia PAGoogle Scholar
  31. 31.
    IUPAC Recommendations on organic and biochemical nomenclature, symbols and terminology etc. http://www.chem.qmul.ac.uk/iupac. Accessed 11 Oct 2009
  32. 32.
    Roeges NPG, De Moor MO. A simple guide to the nomenclature in organic chemistry. www.kahosl.be/site/index.php?p=/nl/downloads/1615/orgnompdf. Accessed 21 Oct 2010
  33. 33.
    ChemIndustry.com. http://www.chemindustry.com. Accessed 11 Oct 2009
  34. 34.
  35. 35.
    Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36CrossRefGoogle Scholar
  36. 36.
    OpenSMILES http://www.opensmiles.org. Accessed 12 Oct 2009
  37. 37.
    The IUPAC international chemical identifier (InChI). http://www.iupac.org/inchi. Accessed 12 Oct 2009
  38. 38.
    Standard ASTM E204 – 98(2007) Standard practices for identification of material by infrared absorption spectroscopy, using the ASTM coded band and chemical classification index. http://www.astm.org/Standards/E204.htm. Accessed 25 April 2010
  39. 39.
    Van Deursen R, Reymond JJ (2007) Chemical space travel. ChemMedChem 2:636–640. doi: 10.1002/cmdc.200700021 CrossRefGoogle Scholar
  40. 40.
    Dobson CM (2004) Chemical space and biology. Nature 432:824–828CrossRefGoogle Scholar
  41. 41.
    Ertl P (2003) Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups. J Chem Inf Comput Sci 43:374–380CrossRefGoogle Scholar
  42. 42.
    BioSolveIT http://www.biosolveit.de/datasets. Accessed 11 Oct 2009
  43. 43.
    CAS Registry Number and Substance Counts. http://www.cas.org/cgi-bin/cas/regreport.pl. Accessed 11 Oct 2009
  44. 44.
  45. 45.
    King B (1997) Metrology and analytical chemistry: bridging the cultural gap. Metrologia 34:41–47CrossRefGoogle Scholar
  46. 46.
    Kipphardt H, Matschat R, Panne U (2008) Metrology in chemistry – a rocky road. Microchim Acta 162:35–41CrossRefGoogle Scholar
  47. 47.
    International vocabulary of metrology. Basic and general concepts and associated terms (VIM) (2008). Joint Committee for Guides in Metrology. http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf. Accessed 25 April 2010
  48. 48.
    King B (2000) The practical realization of the traceability of chemical measurements standards. Accred Qual Assur 5:429–436CrossRefGoogle Scholar
  49. 49.
    Unit of amount of substance (mole). http://www.bipm.org/en/si/base_units/mole.html. Accessed 25 April 2010
  50. 50.
    King B (2001) Meeting the measurement uncertainty and traceability requirements of ISO/IEC standard 17025 in chemical analysis. Fresenius J Anal Chem 371:714–720CrossRefGoogle Scholar
  51. 51.
    EURACHEM/CITAC Guide: Traceability in Chemical Measurement (2003). http://www.measurementuncertainty.org/mu/EC_Trace_2003_print.pdf. Accessed 12 Oct 2009
  52. 52.
    Pfanzagl J (1971) Theory of Measurement. Physical-Verlag, Wursburg-WienGoogle Scholar
  53. 53.
    Forsum U, Hallander HO, Kallner A, Karlsson D (2005) The impact of qualitative analysis in laboratory medicine. Trends Anal Chem 24:546–555CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.D.I. Mendeleyev Inst. for Metrology (VNIIM) and Cent. for Ecol. Saf. of Russ. Acad. of SciencesSt. PetersburgRussia

Personalised recommendations