Skip to main content

Principles of Identification

  • Chapter
  • First Online:
Chemical Identification and its Quality Assurance
  • 1125 Accesses

Abstract

In this initial chapter, concepts and terms related to qualitative chemical analysis are outlined and discussed. Chemical identification is defined as assigning an analyte to one from known chemical compounds or a group/class of compounds. General principles for identification through the use of chemical tests and instrumental measurements are formulated. Qualitative analytical procedures and approaches to implement them are classified. Components of identification procedures are further described. Objects for identification such as compounds, substances, and analyzed samples are discussed in great detail, including identifiers of the objects. Known chemical substances, which amount to more than 110 million entities, are statistically reviewed. Finally, two key metrological issues, traceability in identification operations and qualitative scale of measurements, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Different properties of chemical substances are usually correlated. So mismatch in one property for a pair of compounds will lead to a difference in plenty of other properties. On the contrary, the match in a few properties (but not the only one) between an analyte and the compound A will probably result in (a) matching all others, and (b) difference from those of other compounds, followed by (c) reliable identification of an analyte as A.

    For negative identification of a target, a mismatch rather than a match in properties should be proved.

  2. 2.

    Consideration of physical quantities as continuous ones is an approximation ignoring the discrete structure of matter and quantum effects. So they can be more properly named “quasi-continuous quantities”.

References

  1. Currie LA (1995) Nomenclature in evaluation of analytical methods, including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl Chem 67:1699–1723

    Article  CAS  Google Scholar 

  2. Komar’ NP (1955) Basics of qualitative chemical analysis. Book 1: Ionic equilibria (In Russian). Kharkov University Publisher, Kharkov

    Google Scholar 

  3. Ellison SLR, Gregory S, Hardcastle WA (1998) Quantifying uncertainty in qualitative analysis. Analyst 123:1155–1161

    Article  CAS  Google Scholar 

  4. Hartstra J, Franke JP, De Zeeuw RA (2000) How to approach substance identification in qualitative bioanalysis. J Chromatogr B 739:125–137

    Article  CAS  Google Scholar 

  5. Valcárcel M, Cárdenas S, Gallego M (2000) Qualitative analysis revisited. Crit Rev Anal Chem 30:345–361

    Article  Google Scholar 

  6. Bethem R, Boison J, Gale J, Heller D, Lehotay S, Loo J, Musser S, Price P, Stein S (2003) Establishing the fitness for purpose of mass spectrometric methods. J Am Soc Mass Spectrom 14:528–541

    Article  CAS  Google Scholar 

  7. Ríos A, Barceló D, Buydens L, Cárdenas S, Heydorn K, Karlberg B, Klemm K, Lendl B, Milman B, Neidhart B, Stephany R, Townshend A, Valcárcel M, Zschunke A (2003) Quality assurance of qualitative analysis in the framework of ‘MEQUALAN’ European project. Accred Qual Assur 8:68–77

    Article  Google Scholar 

  8. De Zeeuw RA (2004) Substance identification: the weak link in analytical toxicology. J Chromatogr B 811:3–12

    Google Scholar 

  9. Lehotay SJ, Mastovska K, Amirav A, Fialkov AB, Martos PA, de Kok A, Fernández-Alba AR (2008) Identification and confirmation of chemical residues in food by chromatography-mass spectrometry and other techniques. Trends Anal Chem 27:1070–1090

    Article  CAS  Google Scholar 

  10. Modern qualitative analysis (2005) Trends Anal Chem 24:461–555

    Google Scholar 

  11. Commission Decision 2002/657/EC, August 12, 2002, implementing Council Directive 96/23/EC concerning the performance of analytical methods and interpretation of results (2002) Off J Eur Commun L 221:8–36

    Google Scholar 

  12. Valcárcel M, Cárdenas S, Barceló D, Buydens L, Heydorn K, Karlberg B, Klemm K, Lendl B, Milman B, Neidhart B, Ríos A, Stephany R, Townshend A, Zschunke A (2002) Metrology of qualitative chemical analysis. Report EUR 20605. EC, Luxembourg

    Google Scholar 

  13. Milman BL, Konopelko LA (2000) Identification of chemical substances by testing and screening of hypotheses. I. General. Fresenius J Anal Chem 367:621–628

    Article  CAS  Google Scholar 

  14. Milman BL, Kovrizhnych MA (2000) Identification of chemical substances by testing and screening of hypotheses. II. Determination of impurities in n-hexane and naphthalene. Fresenius J Anal Chem 367:629–634

    Article  CAS  Google Scholar 

  15. Milman BL (2002) A Procedure for decreasing uncertainty in the identification of chemical compounds based on their literature citation and cocitation. Two case studies. Anal Chem 74:1484–1492

    Article  CAS  Google Scholar 

  16. Mil'man BL, Konopel'ko LA (2004) Uncertainty of qualitative chemical analysis: general methodology and binary test methods. J Anal Chem 59:1128–1141

    Article  Google Scholar 

  17. Milman BL (2005) Identification of chemical compounds. Trends Anal Chem 24:493–508

    Article  CAS  Google Scholar 

  18. Milman BL (2005) Literature-based generation of hypotheses on chemical composition using database co-occurrence of chemical compounds. J Chem Inf Model 45:1153–1158

    Article  CAS  Google Scholar 

  19. Milman BL (2008) Introduction to chemical identification (In Russian). VVM, Saint Petersburg

    Google Scholar 

  20. Princeton University WordNet. http://wordnetweb.princeton.edu/perl/webwn?s=identify. Accessed 11 Oct 2009

  21. Valcárcel M, Cárdenas S, Simonet BM, Carrillo-Carrión C (2007) Principles of qualitative analysis in the chromatographic context. J Chromatogr A 1158:234–240

    Article  Google Scholar 

  22. Kunze UR, Schwedt G (1996) Grundlagen der qualitativen und quantitativen Analyse (In German). Georg Thieme, Stuttgart

    Google Scholar 

  23. Otto M (2000) Analytische Chemie. Wiley-VCH, Weinheim

    Google Scholar 

  24. Zolotov YA, Ivanov VM, Amelin VG (2002) Chemical test methods of analysis. Elsevier, Amsterdam

    Google Scholar 

  25. Bentley KW (1963) Elucidation of organic structures by physical and chemical methods. Wiley, New York

    Google Scholar 

  26. Eggins BR (2002) Chemical sensors and biosensors. Wiley, Chichester

    Google Scholar 

  27. Guide to the expression of uncertainty in measurement (1993) ISO, Geneva

    Google Scholar 

  28. NIH PubChem. http://pubchem.ncbi.nlm.nih.gov. Accessed 11 October 2009

  29. Compendium of Pesticide Common Names. http://www.alanwood.net/pesticides/index.html. Accessed 11 Oct 2009

  30. Banks JE (1976) Naming organic compounds: a programmed introduction to organic chemistry. Saunders, Philadelphia PA

    Google Scholar 

  31. IUPAC Recommendations on organic and biochemical nomenclature, symbols and terminology etc. http://www.chem.qmul.ac.uk/iupac. Accessed 11 Oct 2009

  32. Roeges NPG, De Moor MO. A simple guide to the nomenclature in organic chemistry. www.kahosl.be/site/index.php?p=/nl/downloads/1615/orgnompdf. Accessed 21 Oct 2010

  33. ChemIndustry.com. http://www.chemindustry.com. Accessed 11 Oct 2009

  34. CAS Registry. http://www.cas.org/expertise/cascontent/registry/regsys.html. Accessed 12 Oct 2009

  35. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

    Article  CAS  Google Scholar 

  36. OpenSMILES http://www.opensmiles.org. Accessed 12 Oct 2009

  37. The IUPAC international chemical identifier (InChI). http://www.iupac.org/inchi. Accessed 12 Oct 2009

  38. Standard ASTM E204 – 98(2007) Standard practices for identification of material by infrared absorption spectroscopy, using the ASTM coded band and chemical classification index. http://www.astm.org/Standards/E204.htm. Accessed 25 April 2010

  39. Van Deursen R, Reymond JJ (2007) Chemical space travel. ChemMedChem 2:636–640. doi:10.1002/cmdc.200700021

    Article  Google Scholar 

  40. Dobson CM (2004) Chemical space and biology. Nature 432:824–828

    Article  CAS  Google Scholar 

  41. Ertl P (2003) Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups. J Chem Inf Comput Sci 43:374–380

    Article  CAS  Google Scholar 

  42. BioSolveIT http://www.biosolveit.de/datasets. Accessed 11 Oct 2009

  43. CAS Registry Number and Substance Counts. http://www.cas.org/cgi-bin/cas/regreport.pl. Accessed 11 Oct 2009

  44. CAS Chemlist. http://www.cas.org/expertise/cascontent/regulated/index.html. Accessed 12 Oct 2009

  45. King B (1997) Metrology and analytical chemistry: bridging the cultural gap. Metrologia 34:41–47

    Article  Google Scholar 

  46. Kipphardt H, Matschat R, Panne U (2008) Metrology in chemistry – a rocky road. Microchim Acta 162:35–41

    Article  CAS  Google Scholar 

  47. International vocabulary of metrology. Basic and general concepts and associated terms (VIM) (2008). Joint Committee for Guides in Metrology. http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf. Accessed 25 April 2010

  48. King B (2000) The practical realization of the traceability of chemical measurements standards. Accred Qual Assur 5:429–436

    Article  CAS  Google Scholar 

  49. Unit of amount of substance (mole). http://www.bipm.org/en/si/base_units/mole.html. Accessed 25 April 2010

  50. King B (2001) Meeting the measurement uncertainty and traceability requirements of ISO/IEC standard 17025 in chemical analysis. Fresenius J Anal Chem 371:714–720

    Article  CAS  Google Scholar 

  51. EURACHEM/CITAC Guide: Traceability in Chemical Measurement (2003). http://www.measurementuncertainty.org/mu/EC_Trace_2003_print.pdf. Accessed 12 Oct 2009

  52. Pfanzagl J (1971) Theory of Measurement. Physical-Verlag, Wursburg-Wien

    Google Scholar 

  53. Forsum U, Hallander HO, Kallner A, Karlsson D (2005) The impact of qualitative analysis in laboratory medicine. Trends Anal Chem 24:546–555

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris L. Milman .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milman, B.L. (2011). Principles of Identification. In: Chemical Identification and its Quality Assurance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15361-7_1

Download citation

Publish with us

Policies and ethics