Skip to main content

Efficient and Practical Implementations of Cubature on Wiener Space

  • Chapter
  • First Online:
Stochastic Analysis 2010

Abstract

This paper explores and implements high-order numerical schemes for integrating linear parabolic partial differential equations with piece-wise smooth boundary data. The high-order Monte-Carlo methods we present give extremely accurate approximations in computation times that we believe are comparable with much less accurate finite difference and basic Monte-Carlo schemes. A key step in these algorithms seems to be that the order of the approximation is tuned to the accuracy one requires. A considerable improvement in efficiency can be attained by using ultra high-order cubature formulae. Lyons and Victoir (“Cubature on Wiener Space, Proc. R. Soc. Lond. A 460, 169–198”) give a degree 5 approximation of Brownian motion. We extend this cubature to degrees 9 and 11 in 1-dimensional space-time. The benefits are immediately apparent.

MSC (2010): 65C05, 65C30, 65M75, 91G60

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butcher, J.C.: Numerical methods for ordinary differential equations, 2nd edn. Wiley (2008)

    Google Scholar 

  2. Chen, K.T.: Integration of paths, geometric invariant and generalized Campbell–Baker–Hausdorff formula. Ann. Math. II 65, 163–178 (1957)

    Article  Google Scholar 

  3. Crisan, D., Lyons, T.: Minimal entropy approximations and optimal algorithms. Monte Carlo methods Appl. 8(4), 343–355 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gard, T.: Introduction to stochastic differential equations. Marcel Dekker Ltd (1988)

    Google Scholar 

  5. Gyurkó, L.G., Lyons, T.J.: Rough Paths based numerical algorithms in computational finance, appeared in Mathematics in Finance. American Mathematical Society (2010)

    Google Scholar 

  6. Gyurkó, L.G.: Numerical methods for approximating solutions to Rough Differential Equations. DPhil thesis, University of Oxford (2009)

    Google Scholar 

  7. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  8. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Springer, Berlin, Heidelberg, New York (1999)

    Google Scholar 

  9. Kusuoka, S., Stroock, D.: Application of the Malliavin calculus III. J. Fac. Sci. Univ. Tokyo 1A(34), 391–442 (1987)

    MathSciNet  Google Scholar 

  10. Kusuoka, S.: Approximation of expectation of diffusion process and mathematical finance. Adv. Stud. Pure Math. 31, 147–165 (2001)

    MathSciNet  Google Scholar 

  11. Kusuoka, S.: Approximation of expectation of diffusion process based on Lie algebra and Malliavin calculus. preprint (2003). http://kyokan.ms.u-tokyo.ac.jp/users/preprint/pdf/2003-34.pdf

  12. Kusuoka, S.: Malliavin calculus Revisited. J. Math. Sci. Univ. Tokyo 10, 261–277 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Kusuoka, S., Ninomiya, S.: A New Simulation Method of Diffusion Processes Applied to Finance, appeared in Stochastic Processes and Applications to Mathematical Finance: Proceedings of the Ritsumeikan International Symposium, Kusatsu, Shiga, Japan, 5–9 March 2003 (2004)

    Google Scholar 

  14. Litterer, C.: The signature in numerical algorithms. DPhil Thesis, Mathematical Institute, University of Oxford (2008)

    Google Scholar 

  15. Litterer, C., Lyons, T.J.: Cubature on Wiener space continued, appeared in Stochastic Processes and Applications to Mathematical Finance, Proceedings of the 6th Ritsumeikan International Symposium Ritsumeikan University, Japan, 6–10 March 2006 (2006)

    Google Scholar 

  16. Lyons, T.J.: Differential equations driven by rough signals. Revista Mathematica Iber. 14(2), 215–310 (1998)

    MATH  MathSciNet  Google Scholar 

  17. Lyons, T.J., Qian, Z.: System control and rough paths. Oxford mathematical monographs, Clarendon Press, Oxford (2002)

    Book  MATH  Google Scholar 

  18. Lyons, T.J., Caruana, M., Lévy, T.: Differential equations driven by rough paths, Ecole d’Eté de Porbabilités de Saint-Flour XXXIV - 2004, Lecture Notes in Mathematics. Springer (2007)

    Google Scholar 

  19. Lyons, T.J., Victoir, N.: Cubature on Wiener Space. Proc. R. Soc. Lond. A 460, 169–198 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ninomiya, S.: A partial sampling method applied to the Kusuoka approximation. Monte Carlo Methods Appl. 9(1), 27–38 (2003)

    MATH  MathSciNet  Google Scholar 

  21. Ninomiya, M., Ninomiya, S.: A new weak approximation scheme of stochastic differential equations by using the Runge-Kutta method. Finance Stoch. 13, 415–443 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ninomiya, S., Victoir, N.: Weak approximation of stochastic differential equations and application to derivative pricing. preprint (2006). http://arxiv.org/PS\_{}cache/math/pdf/0605/0605361v3.pdf

  23. Strichartz, R.S.: The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations. J. Funct. Anal. 72, 320–345 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stroud, A.H.: Approximate calculation of multiple integrals. Prentice Hall (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry J. Lyons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gyurkó, L.G., Lyons, T.J. (2011). Efficient and Practical Implementations of Cubature on Wiener Space. In: Crisan, D. (eds) Stochastic Analysis 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15358-7_5

Download citation

Publish with us

Policies and ethics