Skip to main content

A Laplace Principle for a Stochastic Wave Equation in Spatial Dimension Three

  • Chapter
  • First Online:
Stochastic Analysis 2010

Abstract

We consider a stochastic wave equation in spatial dimension three, driven by a Gaussian noise, white in time and with a stationary spatial covariance. The free terms are non-linear with Lipschitz continuous coefficients. Under suitable conditions on the covariance measure, Dalang and Sanz-Solé (“Memoirs of the AMS, 199, 931, 2009”) have proved the existence of a random field solution with Hölder continuous sample paths, jointly in both arguments, time and space. By perturbing the driving noise with a multiplicative parameter ε ∈ ]0, 1], a family of probability laws corresponding to the respective solutions to the equation is obtained. Using the weak convergence approach to large deviations developed in (“Dupuis and Ellis, A weak convergence approach to the theory of large deviations, Wiley, 1997”), we prove that this family satisfies a Laplace principle in the Hölder norm.

MSC (2010): 60H15, 60F10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bally, V., Millet, A., Sanz-Solé, M.: Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations. Annal. Probab. 23(1), 178–222 (1995)

    Article  MATH  Google Scholar 

  2. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Statist. 20, 39–61 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Annal. Probab. 36(4), 1390–1420 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous spde’s. Electronic J. Probab. 4 (1999)

    Google Scholar 

  5. Dalang, R.C., Frangos, N.E.: The stochastic wave equation in two spatial dimensions. Annal. Probab. 26(1), 187–212 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dalang, R.C., Mueller, C.: Some non-linear SPDE’s that are second order in time. Electronic J. Probab. 8(1), 1–21 (2003)

    MathSciNet  Google Scholar 

  7. Dalang, R.C., Sanz-Solé, M.: Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three. Mem. Am. Math. Soc. 199(931) (2009)

    Google Scholar 

  8. Dalang, R.C., Quer-Sardanyons, L.: Stochastic integrals for spde’s: a comparison. Preprint (2009)

    Google Scholar 

  9. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its applications, vol. 45. Cambridge University Press (1992)

    Google Scholar 

  10. Dupuis, P., Ellis, R.S.: A weak convergence approach to the theory of large deviations. Wiley (1997)

    Google Scholar 

  11. Duan, J., Millet, A.: Large deviations for the Boussinesq equations under random influences. Stoch. Proc. Appl. 119(6), 2052–2081 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kotolenez, P.: Existence, uniqueness and smoothness for a class of function valued stochastic partial differential equations. Stoch. Stoch. Rep. 41, 177–199 (1992)

    Google Scholar 

  13. Lax, P.D.: Functional analysis. Wiley Interscience (2002)

    Google Scholar 

  14. Millet, A., Sanz-Solé, M.: A stochastic wave equation in two space dimensions: smoothness of the law. Annal. Probab. 27, 803–844 (1999)

    Article  MATH  Google Scholar 

  15. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise. Stoch. Proc. Appl. 116, 1636–1659 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Walsh, J.B.: An introduction to stochastic partial differential equations, École d’été de Probabilités de Saint Flour XIV, Lecture Notes in Mathematics, vol. 1180. Springer (1986)

    Google Scholar 

  17. Xu, T., Zhang, T.: White Noise Driven SPDEs with Reflection: Existence, Uniqueness and Large Deviation Principles. Stoch. Processes Appl. 119(10), 3453–3470 (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

Supported by the grant MTM 2009-07203 from the Dirección General de Investigación, Ministerio de Ciencia e Innovación, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Sanz-Solé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ortiz-López, V., Sanz-Solé, M. (2011). A Laplace Principle for a Stochastic Wave Equation in Spatial Dimension Three. In: Crisan, D. (eds) Stochastic Analysis 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15358-7_3

Download citation

Publish with us

Policies and ethics