Skip to main content

Hydrodynamic Cavitation

  • Chapter
  • First Online:
Cavitation in Non-Newtonian Fluids

Abstract

Hydrodynamic cavitation is observed when large pressure differentials are generated within a moving liquid and is accompanied by a number of physical effects, erosion being most notable from a technological viewpoint. Cavitation bubbles can form in the low pressure region and be carried into the higher pressure region where they collapse, so that the surface of any body is acted on by pulsating pressure loads, eventually leading to the destruction of the surface. The collapse of the bubbles goes hand in hand with a cracking noise, giving the first indication of cavitation occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arndt, R.E.A. 2002 Cavitation in vortical flows. Annu. Rev. Fluid Mech. 34, 143–175.

    Article  MathSciNet  Google Scholar 

  • Arndt, R.E.A., Keller, A.P. 1991 Water quality effects on cavitation inception in a trailing vortex. In Proceedings of the ASME, Cavitation ’91, Portland, OR, USA, pp. 1–9. ASME.

    Google Scholar 

  • Arndt, R.E.A., George, W.K. 1979 Pressure fields and cavitation in turbulent shear flows. In Proceedings of the Twelfth Symposium on Naval Hydrodynamics. Washington, DC, USA, pp. 327–339.

    Google Scholar 

  • Arndt, E.A., Hoyt, J.W., Baker, C.B. 1981 A brief survey of polymer effects on cavitation noise. ASME Cavitation and Polyphase Flow Forum. Boulder. pp. 70–73.

    Google Scholar 

  • Arndt, R.E.A., Arakeri, V.H., Higuchi, H. 1991 Some observations of tip-vortex cavitation. J. Fluid Mech. 229, 269–289.

    Article  Google Scholar 

  • Baker, C.B., Arndt, R.E.A., Holl, J.W. 1973 Effect of various concentrations of WSR-301 polyethylene oxide in water upon the cavitation performance of 1/4-in and 2-in hemispherical nosed bodies. Applied Research Laboratory Technical Memo. The Pennsylvania State University, University Park, pp. 73–257.

    Google Scholar 

  • Baker, C.B., Holl, J.W., Arndt, R.E.A. 1976 Influence of gas content and polyethylene oxide additive upon confined jet cavitation in water. ASME Cavitation and Polyphase Flow Forum. New York. pp. 6–8.

    Google Scholar 

  • Barbier, C., Chahine, G. 2009 Experimental studies on the effects of viscosity and viscoelasticity on a line vortex cavitation. In Proceedings of the Seventh International Symposium On Cavitation CAV 2009. Ann Arbor, Michigan, USA.

    Google Scholar 

  • Barnes, H.A., Hutton, J.F., Walters, K. 1989 An Introduction to Rheology. Elsevier, New York.

    Google Scholar 

  • Bazin, V.A., Barabanova, Y.N., Pokhil’ko, A.F. 1976 Effect of dilute aqueous polymeric solutions on the onset of cavitation on a cylinder. Fluid Mech. Soviet Res. 5, 79–82.

    Google Scholar 

  • Bird, R.B., Armstrong, R.C., Hassager, O. 1987 Dynamics of Polymeric Liquids. Wiley, New York.

    Google Scholar 

  • Bismuth, D. 1987 Inhibition de la cavitation de tourbillon marginal par injection de solutions de polymères. PhD thesis. Univ. Paris VI.

    Google Scholar 

  • Boulon, O., Callenaere, M., Franc, J.P., Michel, J.M. 1999 An experimental study into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil. J. Fluid Mech. 390, 1–23.

    Article  MATH  Google Scholar 

  • Brennen, C.E. 1970 Some cavitation experiments with dilute polymer solutions. J. Fluid Mech. 44, 51–63.

    Article  Google Scholar 

  • Brennen, C.E. 1996 Cavitation and Bubble Dynamics. Oxford University Press, Oxford.

    Google Scholar 

  • Brujan, E.A., Ikeda, T., Matsumoto, Y. 2004 Dynamics of ultrasound-induced cavitation bubbles in non-Newtonian liquids and near a rigid boundary. Phys. Fluids 16, 2402–2410.

    Article  Google Scholar 

  • Chahine, G.L., Frederick, G.F., Bateman, R.D. 1993 Propeller tip vortex suppression using selective polymer ejection. J. Fluid Eng. 115, 497–503.

    Article  Google Scholar 

  • Dowson, D., Smith, E.H., Taylor, C.M. 1980 An experimental study of hydrodynamic film rupture in a steadily-loaded, non-conformal contact. J. Mech. Eng. Sci. 33, 71–78.

    Article  Google Scholar 

  • Dubief, Y., White, C.M., Terrapon, V.E., Shaqfeh, E.S.G., Moin, P., Lele, S.K. 2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271–280.

    Article  MATH  Google Scholar 

  • Ellis, A.T. 1967 Some effects of macromolecules on cavitation inception and noise. California Institute of Technology Report 071585.

    Google Scholar 

  • Ellis, A.T., Hoyt, J.W. 1968 Some effects of macromolecules on cavitation inception. ASME Cavitation Forum. New York, pp. 1–5.

    Google Scholar 

  • Ellis, A.T., Waugh, J.G., Ting, R.Y. 1970 Cavitation suppression and stress effects in high-speed flows of water with dilute macromolecular additives. J. Basic Eng. 92, 459–466.

    Article  Google Scholar 

  • Franc, J.P., Michel, J.M. 2004 Fundamentals of Cavitation. Kluwer, Dordrecht.

    Google Scholar 

  • Fruman, D.H. 1984 Tip vortex cavitation inhibition by polymer additives. Cavitation and Multiphase Flow Forum. FED vol. 9, ASME, New York, pp. 73–76.

    Google Scholar 

  • Fruman, D.H. 1999 Effects on non-Newtonian fluids on cavitation. Rheol. Ser. 8, 209–254.

    Article  Google Scholar 

  • Fruman, D.H., Aflalo, S.S. 1989 Tip vortex cavitation inhibition by drag-reducing polymer solution. J. Fluid Eng. 111, 211–216.

    Article  Google Scholar 

  • Fruman, D.H., Bismuth, D., Aflalo, S. 1988 Cavitation in a confined vortex. In AIAA, ASME, SIAM, and APS, National Fluid Dynamics Congress. Cincinnati, OH, pp. 1639–1645.

    Google Scholar 

  • Fruman, D.H., Pichon, T., Cerrutti, P. 1995 Effect of drag-reducing polymer solution ejection on tip vortex cavitation. J. Mar. Sci. Technol. 1, 13–23.

    Article  Google Scholar 

  • Gates, E.M., Acosta, A.J. 1979 Some effects of several free-stream factors on cavitation inception of axisymmetric bodies. In Proceedings of the Twelfth Symposium on Naval Hydrodynamics. Washington, DC, USA, pp. 86–112.

    Google Scholar 

  • Gennes, P.G. de 1990 Introduction to Polymer Dynamics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gowing, S., Briançon-Marjollet, L., Fréchou, D., Godeffroy, V. 1995 Dissolved gas and nuclei effects on tip vortex cavitation inception and cavitation core size. International Symposium on Cavitation. Deauville, France. DCN Bassin d’Essais des Carènes.

    Google Scholar 

  • Hasegawa, T., Ushida, A., Narumi, T. 2009 Huge reduction in pressure drop of water, glycerol/water mixture, and aqueous solution of polyethylene oxide in high speed flows through micro-orifices. Phys. Fluids 21, 052002.

    Article  Google Scholar 

  • Hinch, E.J. 1977 Mechanical models of dilute polymer solutions in strong flows. Phys. Fluids 20, S22–S30.

    Article  Google Scholar 

  • Holl, J.W. 1960 An effect of air content on the occurrence of cavitation. J. Basic Eng. 82, 941–946.

    Article  Google Scholar 

  • Holl, J.W. 1970 Nuclei and cavitation. J. Basic Eng. 92, 681–688.

    Article  Google Scholar 

  • Hoyt, J.W. 1966 Effects of high-polymer solutions on a cavitating body. In Proceedings of the Eleventh International Towing Tank Conference. Tokyo.

    Google Scholar 

  • Hoyt, J.W. 1976 Effect of polymer additives on jet cavitation. J. Fluids Eng. 98, 106–112.

    Article  Google Scholar 

  • Hoyt, J.W. 1978 Vortex cavitation in polymer solutions. Cavitation and Polyphase Flow Forum. ASME, pp. 1718.

    Google Scholar 

  • Hoyt, J.W., Taylor, J.J. 1981 A photographic study of cavitation in jet flow. J. Fluids Eng. 103, 14–18.

    Article  Google Scholar 

  • Huang, T.T. 1971 Comments on “Cavitation inception: the influence of roughness turbulence, and polymer additives.” Sixteenth American Towing Tank Conference. Sao Paulo, Brazil, Vol. 1, p. 6.10.

    Google Scholar 

  • Huang, T.T. 1986 The effects of turbulence stimulators on cavitation inception of axisymmetric headforms. J. Fluid Eng. 108, 261–268.

    Article  Google Scholar 

  • Inge, C. 1983 Effect of polymer additives on tip vortex cavitation. Tech. Rep. TRITA-MEK 83–05, Roy. Inst. Tech. Sweden.

    Google Scholar 

  • Inge, C., Bark, G. 1983 Tip vortex cavitation in water and in dilute polymer solutions. Tech. Rep. TRITA-MEK 83–12, Roy. Inst. Tech. Sweden.

    Google Scholar 

  • Jimenez, J., Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Joseph, D.D. 1990 Fluid Dynamics of Viscoelastic Liquids. Springer, New York.

    Google Scholar 

  • Joseph, D.D., Narain, A., Riccius, O., Arney, M. 1986 Shear-wave speeds and elastic moduli for different liquids. Theory and experiments. J. Fluid Mech. 171, 289–338.

    Article  MATH  Google Scholar 

  • Katz, J., Galdo, J. 1989 Effect of roughness on rollup of tip vortices on a rectangular hydrofoil. J. Aircraft 26, 247–253.

    Article  Google Scholar 

  • Keller, A.P. 1979 Cavitation inception measurement and flow visualisation on axisymmetric bodies at two different free-stream turbulence levels and test procedure. In Proceedings of the ASME International Symposium on Cavitation Inception. New York, USA, pp. 63–74.

    Google Scholar 

  • Keller, A.P. 2000 Cavitation scale effects a representation of its visual appearance and empirically found relations. In Proceedings of the International Conference on Propeller Cavitation NCT’50. Newcastle upon Tyne, UK, pp. 357–380.

    Google Scholar 

  • Knapp, R.T., Daily J.W., Hammitt, F.G. 1970 Cavitation. MacGraw-Hill, New York.

    Google Scholar 

  • Kuiper, G. 1981 Cavitation inception on ship propeller models. PhD thesis, University of Delft, The Netherlands.

    Google Scholar 

  • Latorre, R., Muller, A., Billard, J.Y., Houlier, A. 2004 Investigation of the role of polymer on the delay of tip vortex cavitation. J. Fluid Eng. 126, 724–729.

    Article  Google Scholar 

  • Lumley, J.L. 1969 Drag reduction by additives. Ann. Rev. Fluid Mech. 1, 367–384.

    Article  Google Scholar 

  • Narumi, T., Hasegawa, T. 1986 Experimental study on the squeezing flow of viscoelastic fluids (1st Report, The effect of liquid properties on the flow between a spherical surface and a flat plate). Bull JSME 29, 3731–3736.

    Google Scholar 

  • Ng, S.L, Mun, R.P., Boger, D.V. 1996 Extensional viscosity measurements of dilute solutions of various polymers. J. Non-Newt. Fluid Mech. 65, 291–298.

    Article  Google Scholar 

  • Oba, R., Ito, Y., Uranishi, K. 1978 Effect of polymer additives on cavitation development and noise in water flow through an orifice. J. Fluids Eng. 100, 493–499.

    Article  Google Scholar 

  • Ouibrahim, A., Fruman, D.H., Gaudemer, R. 1996 Vapour cavitation in very confined spaces for Newtonian and non Newtonian fluids. Phys. Fluids 8, 1964–1971.

    Article  Google Scholar 

  • Pauchet, A., Viot, X., Fruman, D. H. 1996 Effect of upstream turbulence on tip vortex roll-up and cavitation. In Proceedings of the ASME Fluids Engineering Division Conference. Atlanta. vol. 1, pp. 463–469.

    Google Scholar 

  • Pan, S.S., Yang, Z.M., Hsu, P.S. 1981 Cavitation inception tests on axisymmetric headforms. J. Fluid Eng. 103, 268–272.

    Article  Google Scholar 

  • Pichon, T., Pauchet, A., Astolfi, A., Fruman, D.H., Billard, J.Y. 1997 Effect of tripping laminar-to-turbulent boundary layer transition on tip vortex cavitation. J. Ship Res. 41, 1–9.

    Google Scholar 

  • Reitzer, H., Gebel, C., Scrivener, O. 1985 Effect of polymeric additives on cavitation and radiated noise in water flowing past a circular cylinder. J. Non Newt. Fluid Mech. 18, 71–79.

    Article  Google Scholar 

  • Rood, E.P. 1991 Mechanisms of cavitation inception. J. Fluids Eng. 113, 163–174.

    Article  Google Scholar 

  • Roy, A., Morozov, A., van Saarloos, W., Larson, R.G. 2006 Mechanism of polymer drag reduction using a low-dimensional model. Phys. Rev. Lett. 97, 23501.

    Article  Google Scholar 

  • Sasaki, S. 1991 Drag reduction effect of rod-like polymer solutions. I. Influences of polymer concentration and rigidity of skeltal back bone. J. Phys. Soc. Japan 60, 868–878.

    Article  Google Scholar 

  • Sasaki, S. 1992 Drag reduction effect of rod-like polymer solutions. III. Molecular weight dependence. J. Phys. Soc. Japan 61, 1960–1963.

    Article  Google Scholar 

  • Seddon, J.R.T, Mullin, T. 2008 Cavitation in anisotropic fluids. Phys. Fluids 20, 023102.

    Article  Google Scholar 

  • Shen, Y.T. 1985 Wing sections on hydrofoils. Part 3. Experimental verifications. J. Ship Res. 29, 39–50.

    Google Scholar 

  • Stokes, J.R. 1998 Swirling flow of viscoelastic fluids. PhD dissertation. University of Melbourne.

    Google Scholar 

  • Tanibayashi, H., Ogura, K., Matsuura, Y. 1998 On the cavitation occurring at the bottom of an accelerated circular cylinder. In Proceedings of the Third International Symposium on Cavitation, Cavitation’98. Grenoble, France, pp. 161–166.

    Google Scholar 

  • Ting, R.Y. 1978 Characteristics of flow cavitation in dilute solutions of polyethylene oxide and polyacrylamide. Phys. Fluids 21, 898–901.

    Article  Google Scholar 

  • Toms, B.A. 1949 Observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the International Congress on Rheology (Holland, 1948). North-Holland, Amsterdam, 1949, pp. II.135–II.141.

    Google Scholar 

  • Toonder, J.M.J. den 1995 Drag reduction by polymer additives in a turbulent pipe flow: laboratory and numerical experiments. PhD thesis, Delft University of Technology.

    Google Scholar 

  • Toonder, J.M.J. den, Nieuwstadt, F.T.M., and Kuiken, G.D.C. 1995 The role of elongational viscosity in the mechanism of drag reduction by polymer additives. Appl. Sci. Res. 54, 95–123.

    Article  MATH  Google Scholar 

  • van der Meulen, J.H.J. 1973 Cavitation suppression by polymer injection. ASME Cavitation and Polyphase Flow Forum. New York, pp. 48–51.

    Google Scholar 

  • van der Meulen, J.H.J. 1976 A holographic study of cavitation on axisymmetric bodies and the influence of polymer additives. Netherlans Ship Model Basin Publ. No. 509.

    Google Scholar 

  • Walters, R.R. 1972 Effect of high-molecular weight polymer additives on the characteristics of cavitation. Advanced Technology Center Inc., Dallas, Report No. B-94300/sTR-32.

    Google Scholar 

  • Warholic, M.D., Massah, H., Hanratty, T.J. 1999 Influence of drag-reducing polymers on turbulence, effects of Reynolds number, concentration, and mixing. Exp. Fluids 27, 461–472.

    Article  Google Scholar 

  • Wang, C.B. 1972 Correlation of the friction factor for turbulent pipe flow of dilute polymer solutions. Ind. Eng. Chem. Fundam. 11, 546–551.

    Article  Google Scholar 

  • White, C.M., Somandepalli, V.S.R., Mungal, M.G. 2004 The turbulence structure of drag reduced boundary layer flow. Exp. Fluids 36, 62–69.

    Article  Google Scholar 

  • Young, F.R. 1989 Cavitation. McGraw-Hill, New York.

    Google Scholar 

  • Zhang, Q., Hsiao, C.T., Chahine, G. 2009 Numerical study of vortex cavitation suppression with polymer injection. In Proceedings of the Seventh International Symposium On Cavitation CAV 2009, Ann Arbor, Michigan, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil-Alexandru Brujan .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brujan, EA. (2011). Hydrodynamic Cavitation. In: Cavitation in Non-Newtonian Fluids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15343-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15343-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15342-6

  • Online ISBN: 978-3-642-15343-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics