Skip to main content

Stabilization of the Spectral-Element Method in Turbulent Flow Simulations

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 76))

Abstract

The effect of over-integration and filter-based stabilization in the spectral-element method is investigated. There is a need to stabilize the SEM for flow problems involving non-smooth solutions, e.g., turbulent flow simulations. In model problems such as the Burgers’ equation (similar to Kirby and Karniadakis, J. Comput. Phys. 191:249–264, 2003) and the scalar transport equation together with full Navier–Stokes simulations it is noticed that over-integration with the full 3/2-rule is not required for stability. The first additional over-integration nodes are the most efficient to remove aliasing errors. Alternatively, filter-based stabilization can in many cases alone help to stabilize the computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. M. Blackburn and S. Schmidt. Spectral element filtering techniques for large eddy simulation with dynamic estimation. J. Comput. Phys., 186(2):610–629, 2003

    Article  MATH  Google Scholar 

  2. J. P. Boyd. Two comments on filtering (artificial viscosity) for chebyshev and legendre spectral and spectral element methods: preserving boundary conditions and interpretation of the filter as a diffusion. J. Comput. Phys., 143(1):283–288, 1998

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods in Fluid Dynamics. Springer, Berlin, 1988

    MATH  Google Scholar 

  4. D. C. Chu and G. E. Karniadakis. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces. J. Fluid Mech., 250:1–42, 1993

    Article  Google Scholar 

  5. S. Dong, G. E. Karniadakis, A. Ekmekci, and D. Rockwell. A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. J. Fluid Mech., 569:185–207, 2006

    Article  MATH  Google Scholar 

  6. P. Fischer, J. Kruse, J. Mullen, H. Tufo, J. Lottes, and S. Kerkemeier. NEK5000 – Open Source Spectral Element CFD solver. https://nek5000.mcs.anl.gov/index.php/MainPage, 2008

    Google Scholar 

  7. P. Fischer and J. Mullen. Filter-based stabilization of spectral element methods. C.R. Acad. Sci. Paris, t. 332, Serie I:p. 265–270, 2001

    Google Scholar 

  8. P. F. Fischer. An overlapping schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys., 133(1):84–101, 1997

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Gilbert and L. Kleiser. Near-wall phenomena in transition to turbulence. In S. J. Kline and N. H. Afgan, editors, Near-Wall Turbulence, pages 7–27, New York, USA, 1990. 1988 Zoran Zarić Memorial Conference

    Google Scholar 

  10. G.-S. Karamanos and G. E. Karniadakis. A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys., 163(1):22–50, 2000

    Article  MATH  MathSciNet  Google Scholar 

  11. R. M. Kirby and G. E. Karniadakis. De-alising on non-uniform grids: algorithms and applications. J. Comput. Phys., 191:249–264, 2003

    Article  MATH  Google Scholar 

  12. Y. Maday, A. T. Patera, and E. M. Rønquist. An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput., 5(4): 263–292, 1990

    Article  MATH  MathSciNet  Google Scholar 

  13. Y. Maday and E. M. Rønquist. Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comput. Methods Appl. Mech. Eng., 80 (1–3):91–115, 1990

    Article  MATH  Google Scholar 

  14. R. D. Moser, J. Kim, and N. Mansour. Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids, 11(4):943–945, 1999

    Article  MATH  Google Scholar 

  15. R. Pasquetti. Spectral vanishing viscosity method for large-eddy simulation of turbulent flows. J. Sci. Comput., 27(1–3):365–375, 2006

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Pasquetti and C. J. Xu. Comments on “Filter-based stabilization of spectral element methods”. Note in J. Comput. Phys., 182:646–650, 2002

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Schlatter, S. Stolz, and L. Kleiser. Relaxation-term models for LES of turbulent and transitional wall-bounded flows. In DLES-5, 2003

    Google Scholar 

  18. P. Schlatter, S. Stolz, and L. Kleiser. LES of transitional flows using the approximate deconvolution model. Int. J. Heat Fluid Flow, 25(3):549–558, 2004

    Article  Google Scholar 

  19. S. Sherwin and G. Karniadakis. A triangular spectral element method; applications to the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng., 123:189, 1995

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Tomboulides and S. Orszag. Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech., 416:45–73, 2000

    Article  MATH  MathSciNet  Google Scholar 

  21. H. M. Tufo and P. F. Fischer. Fast parallel direct solvers for coarse grid problems. J. Parallel Distrib. Comput., 61(2):151–177, 2001

    Article  MATH  Google Scholar 

  22. C. E. Wasberg, T. Gjesdal, B. A. Pettersson Reif, and Ø. Andreassen. Variational multiscale turbulence modelling in a high order spectral element method. J. Comput. Phys., 228(19):7333–7356, 2009

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Xu and R. Pasquetti. Stabilized spectral element computations of high Reynolds number incompressible flows. J. Comput. Phys., 196(2):680–704, 2004

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ohlsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this paper

Cite this paper

Ohlsson, J., Schlatter, P., Fischer, P.F., Henningson, D.S. (2011). Stabilization of the Spectral-Element Method in Turbulent Flow Simulations. In: Hesthaven, J., Rønquist, E. (eds) Spectral and High Order Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15337-2_43

Download citation

Publish with us

Policies and ethics