Skip to main content

Iridium-Catalyzed Hydrogenation Using Phosphorus Ligands

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 34))

Abstract

Due to the requirement of obtaining enantiomerically pure products through environmentally friendly technologies, the development of new methods in asymmetric catalysis is becoming an important approach to asymmetric synthesis. Asymmetric hydrogenation is one of the most applied catalytic reactions for the preparation of enantiomerically pure products. Iridium complexes containing phosphorus ligands have been less applied as catalysts in hydrogenation reaction than their corresponding rhodium complexes. On the other hand, most of the iridium complexes used as catalyst in hydrogenation reaction contain phosphorus–nitrogen ligands. However, iridium complexes containing a great variety of mono- and bidentate phosphorus ligands (phosphines, phosphinites, phosphites, phosphoramidites, and the combination of these functionalities) have been applied in hydrogenation reaction with different grades of success. In the early days, diphosphines were the most widely used phosphorus ligands. However, they are generally difficult to synthesize and prone to oxidation. In recent years, chiral phosphites, phosphinites, phosphonites, and phosphoroamidites have emerged as new types of ligands, which present several advantages and high catalytic activity and selectivity. Homogeneous and heterogeneous systems have been studied, allowing the recycling of catalysts. Slight modifications in the electronic and steric properties of the ligands influence the catalytic results, which indicates the potentiality of modular ligands. Imines, including unfunctionalized N–H imines and cyclic imines as quinolines and other substrates, have been transformed in the corresponding chiral amines with ee higher than 95% in many cases. Binol-derived phosphoroamidite constitute one of the most successful ligands in these asymmetric reaction achieving, in some cases, practically total enantioselectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cornils B, Herrmann WA (eds) (2002) Applied homogeneous catalysis with organometallic compounds, 2nd edn. VCH, Weinheim

    Google Scholar 

  2. de Vries JG, Elsevier CJ (eds) (2007) The handbook of homogeneous hydrogenation. VCH, Weinheim

    Google Scholar 

  3. Oro LA, Claver C (eds) (2009) Iridium complexes in organic synthesis. VCH, Weinheim

    Google Scholar 

  4. Börner A (ed) (2008) Trivalent phosphorus compounds in asymmetric catalysis, synthesis and applications. VCH, Weinheim

    Google Scholar 

  5. Jacobsen EN, Pfaltz A, Yamamoto H (eds) (1999) Comprehensive asymmetric catalysis, vol 1. Springer, Berlin, Chapters 5 and 6

    Google Scholar 

  6. Blaser HU, Schmidt E (eds) (2004) Asymmetric catalysis on industrial scale: challenges, approaches and solutions. VCH, Weinheim

    Google Scholar 

  7. Ojima I (ed) (2010) Catalytic asymmetric synthesis, 3rd edn. VCH, Weinheim

    Google Scholar 

  8. Claver C, Fernandez E (2008) In: Anderson P (ed) Modern reduction methods. VCH, Weinheim, Chapter 3

    Google Scholar 

  9. Morimoto T, Nakajima N, Achiwa K (1995) Synlett 748

    Google Scholar 

  10. Sablong R, Osborn JA (1996) Tetrahedron: Asymmetry 7:3059

    Article  CAS  Google Scholar 

  11. Margalef-Català R, Claver C, Salagre P, Fernandez E (2000) Tetrahedron: Asymmetry 11:1469

    Article  Google Scholar 

  12. Moser H, Rihs G, Sauter HZ (1982) Naturforsch 37B:451

    CAS  Google Scholar 

  13. Ciba-Geigy Ltd (1972) US Patents 3,937,730 and 4,022,611

    Google Scholar 

  14. Xiao D, Zhang X (2001) Angew Chem Int Ed 40:3425

    Article  CAS  Google Scholar 

  15. Hou G, Gosselin F, Li W, McWilliams JC, Sun Y, Weisel M, O’Shea PDC, Chen I, Davies W, Zhang X (2009) J Am Chem Soc 131:9882

    Article  CAS  Google Scholar 

  16. Fryzuk MD, MacNeil PA, Rettig SJ (1987) J Am Chem Soc 109:2803

    Article  CAS  Google Scholar 

  17. Espino G, Xiao L, Puchberger M, Mereiter K, Spindler F, Manzano BR (2009) Dalton Trans 2751

    Google Scholar 

  18. Dervisi A, Carcedo C, Ooi L (2006) Adv Synth Catal 348:175

    Article  CAS  Google Scholar 

  19. Imamoto T, Iwadate N, Yoshida K (2006) Org Lett 8:2289

    Article  CAS  Google Scholar 

  20. Wang X-B, Wang DW, Lu SM, Yu CB, Zhou YG (2009) Tetrahedron: Asymmetry 20:1040

    Article  CAS  Google Scholar 

  21. Wang WB, Lu SM, Yang PY, Han XW, Zhou YG (2003) J Am Chem Soc 125:10536

    Article  CAS  Google Scholar 

  22. Qiu L, Kwong FY, Wu J, Lam WH, Chan S, Yu W-Y, Li Y-M, Guo R, Zhou Z, Chan ASC (2006) J Am Chem Soc 128:5955

    Article  CAS  Google Scholar 

  23. Katritzky AR, Rachwal S, Rachwal B (1996) Tetrahedron 52:15031

    Article  CAS  Google Scholar 

  24. Wang DW, Wang XB, Wang DS, Lu SM, Zhou YG, Li YX (2009) J Org Chem 74:2780

    Article  CAS  Google Scholar 

  25. Guimet E, Diéguez M, Ruiz A, Claver C (2004) Tetrahedron: Asymmetry 15:2247

    Article  CAS  Google Scholar 

  26. Guiu E, Aghmiz M, Díaz Y, Claver C, Meseguer B, Militzer C, Castillón S (2006) Eur J Org Chem 627

    Google Scholar 

  27. Roucoux A, Schulz J, Patin H (2002) Chem Rev 102:3757

    Article  CAS  Google Scholar 

  28. Gual A, Godard C, Philippot K, Chaudret B, Denicourt-Nowicki A, Roucoux A, Castillón S, Claver C (2009) ChemSusChem 2:769

    Article  CAS  Google Scholar 

  29. Eggenstein M, Thomas A, Theuerkauf J, Franció G, Leitner W (2009) Adv Synth Catal 351:725

    Article  CAS  Google Scholar 

  30. Jerphagnon T, Renaud J-L, Bruneau C (2004) Tetrahedron: Asymmetry 15:2101

    Article  CAS  Google Scholar 

  31. Reetz MT (2003) Chim Oggi 21:5

    CAS  Google Scholar 

  32. van den Berg M, Feringa BL, Minnaard AJ (2007) In: de Vries JG, Elsevier CJ (eds) The handbook of homogeneous hydrogenation. VCH, Weinheim, p 995

    Google Scholar 

  33. de Vries JG (2005) In: Ager DJ (ed) Handbook of chiral chemicals, 2nd edn. CRC, Boca Raton, FL, p 269

    Chapter  Google Scholar 

  34. Minnaard AJ, Feringa BL, Lefort L, de Vries JG (2007) Acc Chem Res 40:1267

    Article  CAS  Google Scholar 

  35. Diéguez M, Pàmies O, Ruiz A, Claver C (2004) Phosphite ligands in asymmetric hydrogenation. In: Malhotra SV (ed) Methodologies in asymmetric catalysis, vol 880. ACS, Washington, DC, p 161

    Chapter  Google Scholar 

  36. Lefort L, Boogers JAF, de Vries AHM, de Vries JG (2004) Org Lett 6:1733

    Article  CAS  Google Scholar 

  37. Swennenhuis BHG, Chen R, van Leeuwen PWNM, de Vries JG, Kamer PCJ (2008) Org Lett 10:989

    Article  CAS  Google Scholar 

  38. Mata Y, Diéguez M, Pàmies O, Woodward SJ (2006) Org Chem 71:8159

    Article  CAS  Google Scholar 

  39. Mršić N, Lefort L, Boogers JAF, Minnaard AJ, Feringa BL, de Vries JG (2008) Adv Synth Catal 350:1081

    Article  Google Scholar 

  40. Mršić N, Jerphagnon T, Minnaard AJ, Feringa BL, de Vries JG (2009) Adv Synth Catal 351:2549

    Article  Google Scholar 

  41. Mršić N, Minnaard AJ, Feringa BL, de Vries JG (2009) J Am Chem Soc 131:8358

    Article  Google Scholar 

  42. Murata S, Sugimoto T, Matsuura S (1987) Heterocycles 26:763

    Article  CAS  Google Scholar 

  43. Bianchini C, Barbaro P, Scapacci G, Farnetti E, Graziani M (1998) Organometallics 17:3308

    Article  CAS  Google Scholar 

  44. Erre G, Enthaler S, Junge K, Addis D, Beller M (2009) Adv Synth Catal 351:1437

    Article  CAS  Google Scholar 

  45. Broady SD, Martin DMG, Lennon IC, Ramsden JA, Muir JC (2006) Patent WO2006067412 A1

    Google Scholar 

  46. Marie P, Deblon S, Breher F, Geier J, Böhler C, Rüegger H, Schönberg H, Grützmacher H (2004) Chem Eur J 10:4198

    Article  Google Scholar 

  47. Hou G-H, Xie J-H, Yan P-C, Zhou Q-L (2009) J Am Chem Soc 131:1366

    Article  CAS  Google Scholar 

  48. Wu TR, Chong JM (2006) J Am Chem Soc 128:9646

    Article  CAS  Google Scholar 

  49. Zhang Q, Tu G, Zhao Y, Cheng T (2002) Tetrahedron 58:6795

    Article  CAS  Google Scholar 

  50. Knölker H-J, Agarwal S (2005) Tetrahedron Lett 46:1173

    Article  Google Scholar 

  51. Reetz MT, Bondarev O (2007) Angew Chem Int Ed 46:4523

    Article  CAS  Google Scholar 

  52. Sahoo S, Kumar P, Lefebvre F, Halligudi SB (2008) J Catal 254:91

    Article  CAS  Google Scholar 

  53. Claver C, Fernández E, Margalef-Catalán R, Medina F, Salagre P, Sueiras JE (2001) J Catal 201:70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Spanish Government (Consolider Ingenio CSD2006-0003, 2008PGIR/07 to O. Pàmies, 2008PGIR/08 to M. Diéguez and ICREA Academia award to M. Diéguez) and the Catalan Government (2009SGR116) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Claver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Diéguez, M., Pàmies, O., Claver, C. (2011). Iridium-Catalyzed Hydrogenation Using Phosphorus Ligands. In: Andersson, P. (eds) Iridium Catalysis. Topics in Organometallic Chemistry, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15334-1_2

Download citation

Publish with us

Policies and ethics