Skip to main content

Power Arc Protective Fittings for Composite Long Rod Insulators

  • Chapter
Silicone Composite Insulators

Part of the book series: Power Systems ((POWSYS))

  • 3404 Accesses

Abstract

Various factors determine whether or not power arc protective fittings need to be used. Network parameters such as the current, duration and frequency of a short circuit are very influential. However, the basic set-up of the insulator string is also significant: Here, it is necessary to differentiate between the cap and pin design and the long rod design, which behave differently when there is a power arc and therefore influence the philosophy of power arc protection. Composite insulators have a long rod design. Unlike porcelain long rod insulators, however, they have the distinctive feature of being able to be manufactured in one piece without any intermediate fittings, even for the highest voltage levels. As a result of this classification, many “power arc” experiences and rules associated with porcelain long rod insulators also apply to composite long rods. There is also one notable difference: The slenderness of the composite long rods results in smaller fitting diameters, which makes it necessary to protect the insulator against corona at lower transmission voltages and can require a coordination of corona and power arc protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AE:

Cross-section of rod electrode

ATH:

Aluminium trihydrate, Aluminium hydroxide

BPA:

Magnetic field of arc

BR:

Magnetic field of current-carrying rod

CIGRE:

Conseil international des grands reseaux electriques (international council for large electric systems)

FM:

Migration force by self field (on the rod electrode)

FAR:

Force by regeneration of optimal arc root conditions

FA:

Force by aerodynamic resistance

FL:

Force by outer current loop

FT:

Thermal ascending force

FLT:

Force by longitudinal pulling

I:

Current

IT:

Cumulative current

IT1:

Cumulative current for feed 1

IT2:

Cumulative current for feed 2

ISC:

Short-circuit current

IPA:

Power arc current

IP1:

Partial current 1

IP2:

Partial current 2

IEC:

International Electrotechnical Commission

PMD:

Required power for material decomposition

TC:

Technical committee

PD:

Partial discharge

TG:

Glass transition temperature

UPA:

Power arc voltage

c:

Thermal capacity

d:

Diameter of rod electrode

kL:

Factor between 0…1, which determines the part of the arc power to heat the end burning point

t:

Time

tSC:

Time of short circuit

tPA:

Time of power arc

IPA:

Arc current

v:

Arc movement rate

x:

Distance/exponent

λ:

Thermal conductivity

ϑ0:

Temperature on the rod front end

References

  1. de Tourreil C, Schmuck F on behalf of CIGRE working group B2.21 (2008) On the use of power arc protection devices for composite insulators on transmission lines. CIGRE TB 365, Dec

    Google Scholar 

  2. Klengel H (1990) Über Möglichkeiten der Stabilisierung des langen freien Hochleistungs-Lichtbogens in Luft. Dissertation TU Dresden

    Google Scholar 

  3. Möcks, L (1982) Power arc protection devices for striking distances in overhead lines and substations. ETZ Report 16, VDE Verlag

    Google Scholar 

  4. Gönenc I (1960) Power arc movement along round rods. ETZ Archive 81

    Google Scholar 

  5. Strnad A, Schuster M (1980) Protection of insulator strings against high-power arcs, EVS

    Google Scholar 

  6. Strnad A (1979) Lichtbogenschutzarmaturen für das 380 kV Netz, Elektrizitätswirtschaft 1979 Nr. 3099

    Google Scholar 

  7. Klengel H (2009) Isolatoren und Armaturen für Isolatorketten in Starkstrom-Freileitungen, Online Verlag new-ebooks.de

    Google Scholar 

  8. Patent DRP 916312 (1941) An den Enden von Lichtbogenschutzhörnern anzubringender, zweckmäßig aufzuschraubender Elektrodenkörper kugeliger, zylindrischer oder birnenförmiger Gestalt

    Google Scholar 

  9. Patent DE 2610348 (1976) Lichtbogenschutzarmatur für Isolatoren von Hochspannungsfreileitungen

    Google Scholar 

  10. Patent DE 2659101 (1976) Lichtbogenschutzarmatur für Isolatoren von Hochspannungsfreileitungen

    Google Scholar 

  11. Patent DE 2814994 (1978) Brennelektrode für einen Lichtbogenschutzring

    Google Scholar 

  12. Lichtbogenschutz und Feldsteuerarmaturen. RIBE-Katalog, 10/2011

    Google Scholar 

  13. IEC 61467 Ed 1 (2008) Insulators for overhead lines—Insulator strings and sets for lines with a nominal voltage greater than 1 000 V—AC power arc tests

    Google Scholar 

  14. CIGRE WG 22.03 (2001) Composite insulator handling guide. TB 184

    Google Scholar 

  15. IEC TR 61467 Ed. 1 (1997) Insulators for overhead lines with a nominal voltage above 1000 V—AC power arc tests

    Google Scholar 

  16. Vosloo WL (2007) Power arc damage on insulator end fittings. Study of Stellenbosch University on the ESKOM network

    Google Scholar 

  17. Gorur RS, Cherney EA., Burnham JT (1999) Outdoor insulators. ISBN 0967761107

    Google Scholar 

  18. IEC 60120 Ed. 3: (1984) Dimensions of ball and socket couplings of string insulator units

    Google Scholar 

  19. IEC 60695-11-10 1st Ed. 1999 + Amendment 2003 Fire hazard testing: test flames—50 W horizontal and vertical flame test methods

    Google Scholar 

  20. P-IEC 61006 Ed 2 (2004) Electrical insulating materials—methods of test for the determination of the glass transition temperature

    Google Scholar 

  21. Kesselring F (1968) Theoretische Grundlagen zur Berechnung der Schaltgeräte. Sammlung Göschen, Band 71, Verlag de Gruyter

    Google Scholar 

  22. EN 50341-3-4 (2001) Overhead electrical Lines exceeding 45 kV

    Google Scholar 

  23. P-IEC 61109 Ed1 (1992) Composite insulators for a.c. overhead lines with a nominal voltage greater than 1000 V—Definitions, test methods and acceptance criteria

    Google Scholar 

  24. CIGRE WG 22.10 (1988) Technical basis for minimal requirement for composite insulators, ELT_088_3

    Google Scholar 

  25. IEC 61109 Amendment 1 (1995) Composite insulators for a.c. overhead lines with a nominal voltage greater than 1000 V—Definitions, test methods and acceptance criteria

    Google Scholar 

  26. P-IEC 60707 Ed 2 (1999) Flammability of solid non-metallic materials when exposed to flame sources—List of test methods

    Google Scholar 

  27. CIGRE D1.14, Project Group Flammability: Requirements on Testing Flammability of polymeric Materials for Outdoor Insulation. TB 489 2012

    Google Scholar 

  28. IEC 62217 Ed 1 (2005) Polymeric insulators for indoor and outdoor use with a nominal voltage >1 000 V—General definitions, test methods and acceptance criteria

    Google Scholar 

  29. IEC 60587 Ed. 3 (2007) Electrical insulating materials used under severe ambient conditions—Test methods for evaluating resistance to tracking and erosion

    Google Scholar 

  30. IEC 60071-1 Ed. 8.1 + Amendment (2011) Insulation co-ordination—Part 1: Definitions, principles and rules

    Google Scholar 

  31. Stephen R, Seppa TO, Douglass D, Pirovano G, Hill R, Troppauer W, St-Louis M, Macey RE, Yoshida S, Schmuck F, Sunkle DC, Dulhunty P, Asselin J-M, Hearnshaw D (2007) Considerations relating to the use of high temperature conductors. CIGRE TB 331 Oct

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Papailiou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Papailiou, K., Schmuck, F. (2013). Power Arc Protective Fittings for Composite Long Rod Insulators. In: Silicone Composite Insulators. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15320-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15320-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15319-8

  • Online ISBN: 978-3-642-15320-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics