Skip to main content

Clustering of fMRI Data Using Affinity Propagation

  • Conference paper
Brain Informatics (BI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6334))

Included in the following conference series:

Abstract

Clustering methods are commonly used for fMRI (functional Magnetic Resonance Imaging) data analysis. Based on an effective clustering algorithm called Affinity Propagation (AP) and a new defined similarity measure, we present a method for detecting activated brain regions. In the proposed method, autocovariance function values and the Euclidean distance metric of time series are firstly calculated and combined into a new similarity measure, then the AP algorithm with the measure is carried out on all time series of data, and at last regions with which their cross-correlation coefficients are greater than a threshold are taken as activations. Without setting the number of clusters in advance, our method is especially appropriate for the analysis of fMRI data collected with a periodic experimental paradigm. The validity of the proposed method is illustrated by experiments on a simulated dataset and a benchmark dataset. It can detect all activated regions in the simulated dataset accurately, and its error rate is smaller than that of K-means. On the benchmark dataset, the result is very similar to SPM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation. Proceedings of the National Academy of Sciences 87, 9868–9872 (1990)

    Article  Google Scholar 

  2. Worsley, K., Friston, K.: Analysis of fMRI Time-series Revisited Again. NeuroImage 2, 173–181 (1995)

    Article  Google Scholar 

  3. Goutte, C., Toft, P., Rostrup, E., Nielsen, F.A., Hansen, L.K.: On Clustering fMRI Time Series. NeuroImage 9, 298–310 (1999)

    Article  Google Scholar 

  4. Chuang, K., Chiu, M., Lin, C.C., Chen, J.: Model-free Functional MRI Anal- ysis Using Kohonen Clustering Neural Network and Fuzzy C-means. IEEE Trans-actions on Medical Imaging 18, 1117–1128 (1999)

    Article  Google Scholar 

  5. Baumgartner, R., Scarth, G., Teichtmeister, C., Somorjai, R., Moser, E.: Fuzzy Clustering of Gradient-echo Functional MRI in the Human Visual Cortex. Part I: Reproducibility. Journal of Magnetic Resonance Imaging 7, 1094–1101 (1997)

    Article  Google Scholar 

  6. Baumgartner, R., Ryner, L., Richter, W., Summers, R., Jarmasz, M., Somor-jai, R.: Comparison of Two Exploratory Data Analysis Methods for fMRI: Fuzzy Clustering vs. Principal Component Analysis. Magnetic Resonance in Medicine 18, 89–94 (2000)

    Google Scholar 

  7. Hansen, L.K., Larsen, F.A., Nielsen, S.C., Strother, E., Rostrup, E., Savoy, R., Svarer, C., Paulson, O.B.: Generalizeable Patterns in NeuroImaging: How Many Principal Components. NeuroImage 9, 534–544 (1999)

    Article  Google Scholar 

  8. McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., Spjnowski, T.J.: Analysis of fMRI Data by Blind Separation into Independent Spatial Components. Human Brain Mapping 6, 160–188 (1998)

    Article  Google Scholar 

  9. Mohamed, L.S., Friston, K.J., Price, C.J.: Detecting Subject-specific Activations Using Fuzzy Clustering. NeuroImage 36, 594–605 (2007)

    Article  Google Scholar 

  10. Filzmoser, P., Baumgartner, R., Moser, E.: A Hierarchical Clustering Method for Analyzing Functional MR Images. Magnetic Resonance Imaging 17(6), 817–826 (1999)

    Article  Google Scholar 

  11. Dimitriadou, E., Barth, M., Windischberger, C., Hornik, K., Moser, E.: A Quantitative Comparison of Functional MRI Cluster Analysis. Artificial Intelligence in Medicine 31, 57–71 (2004)

    Article  Google Scholar 

  12. Yeo, B.T., Ou, W.: Clustering fMRI time series, http://people.csail.mit.edu/ythomas/6867fMRI.pdf

  13. Fadili, M.J., Ruan, S., Bloyet, D., Mazoyer, B.: A Multistep Unsupervised Fuzzy Clustering Analysis of fMRI Time Series. Human Brain Mapping 10, 160–178 (2000)

    Article  Google Scholar 

  14. Wang, D., Shi, L., Yeung, D.S., Heng, P., Wong, T., Tsang, E.C.C.: Support Vector Clustering for Brain Activation Detection. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 572–579. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Bandettini, P.A., Jesmanowicz, A., Wong, E.C., Hyde, J.S.: Processing Strategies for Time-course Data Sets in Functional MRI of the Human Brain. Magnetic Resonance in Medicine 30(2), 161–173 (1993)

    Article  Google Scholar 

  16. Ye, J., Lazar, N.A., Li, Y.: Geostatistical Analysis in Clustering fMRI Time Series. Statistics in Medicine 28(19), 2490–2508 (2009)

    Article  MathSciNet  Google Scholar 

  17. Yang, J., Zhong, N., Liang, P.P., Wang, J., Yao, Y.Y., Lu, S.F.: Brain Activation Detection by Neighborhood One-class SVM. In: Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology – workshops, pp. 47–51 (2007)

    Google Scholar 

  18. Friston, K.J.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2006)

    Google Scholar 

  19. Frey, B.J., Dueck, D.: Clustering by Passing Messages between Data Points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meyer-Baese, A., Wismueller, A., Lange, O.: Comparison of Two Exploratory Data Analysis Methods for fMRI: Unsupervised Clustering versus Independent Component Analysis. IEEE Transactions on Information Technology in Biomedicine 8(3), 387–398 (2004)

    Article  Google Scholar 

  21. Maas, L.C., Frederick, B.D., Yurgelun-Todd, D.A., Renshaw, P.F.: Autocovariance Based Analysis of Functional MRI Data. Biological Psychiatry 39, 640–641 (1996)

    Article  Google Scholar 

  22. Thirion, B., Faugeras, O.: Feature Characterization in fMRI Data: The Information Bottleneck approach. Medical Image Analysis 8, 403–419 (2004)

    Article  Google Scholar 

  23. Chen, H., Yuan, H., Yao, D., Chen, L., Chen, W.: An Integrated Neighborhood Correlation and Hierarchical Clustering Approach of Functional MRI. IEEE Transactions on Biomedical Engineering 53(3), 452–458 (2006)

    Article  Google Scholar 

  24. Fadilia, M.J., Ruana, S., Bloyeta, D., Mazoyer, B.: On the Number of Clusters and the Fuzziness Index for Unsupervised FCA Application to BOLD fMRI Time Series. Medical Image Analysis 5, 55–67 (2001)

    Article  Google Scholar 

  25. Zhong, N., Yao, Y.Y., Ohshima, M.: Peculiarity Oriented Multidatabase Mining. IEEE Transactions on Knowledge and Data Engineering 15(4), 952–960 (2003)

    Article  Google Scholar 

  26. Golland, Y., Golland, P., Bentin, S., Malach, R.: Data-driven Clustering Reveals a Fundamental Subdivision of the Human Cortex into Two Global Systems. Neuropsychologia 46, 540–553 (2008)

    Article  Google Scholar 

  27. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, pp. 189–225. John Wiley & Sons, New York (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, D., Lu, W., Zhong, N. (2010). Clustering of fMRI Data Using Affinity Propagation. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds) Brain Informatics. BI 2010. Lecture Notes in Computer Science(), vol 6334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15314-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15314-3_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15313-6

  • Online ISBN: 978-3-642-15314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics