Skip to main content

Data Fusion and Feature Selection for Alzheimer’s Diagnosis

  • Conference paper
Brain Informatics (BI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6334))

Included in the following conference series:

Abstract

The exact cause of Alzheimer’s disease is unknown; thus, ascertaining what information is vital for the purpose of diagnosis, whether human or automated, is difficult. When conducting a diagnosis, one approach is to collect as much potentially relevant information as possible in the hopes of capturing the important information; this is the Alzheimer’s Disease Neuroimaging Initiative (ADNI) adopted approach. ADNI collects different clinical, image-based and genetic information related to Alzheimer’s disease. This study proposes a methodology for using ADNI’s data. First, a series of support vector machines is constructed upon nine data sets. Five are the results of clinical tests and the other four are features derived from positron emission tomography (PET) imagery. Next, the SVMs are fused together to determine the final clinical dementia rating of a patient: normal or abnormal. In addition, the utility of applying feature selection methods to the generated PET feature data is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADNI-Info.: Alzheimer’s Disease Neuroimaging, Initiative: http://www.adni-info.org/ (Retrieved March 1, 2010)

  2. Minoshima, S., Frey, K., Koeppe, R., Foster, N., Kuhl, D.: A Diagnostic Approach in Alzheimer’s Disease Using Three-Dimensional Stereotactic Surface Projections of Fluorine-18-FDG PET. Journal of Nuclear Medicine 36(7), 1238–1248 (1995)

    Google Scholar 

  3. Sadeghi, N., Foster, N., Wang, A., Minoshima, S., Lieberman, A., Tasdizen, T.: Automatic Classification of Alzheimer’s Disease vs. Frontotemporal Dementia: A Spatial Decision Tree Approach with FDG-PET. In: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Micro, pp. 408–411 (2008)

    Google Scholar 

  4. Huang, C., Yan, B., Jiang, H., Wang, D.: Combining voxel-based morphometry with Artificial Neural Network theory in the application research of diagnosing Alzheimer’s disease. In: International Conference on BioMedical Engineering and Informatics, pp. 250–254 (2008)

    Google Scholar 

  5. Fan, Y., Batmanghelich, N., Clark, C., Davatzikos, C.: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39(4), 1731–1743 (2008)

    Article  Google Scholar 

  6. Mosconi, L., Tsui, W., Herholz, K., Pupi, A., Drzezga, A., Lucignani, G., Reiman, E., Holthoff, V., Kalbe, E., Sorbi, S., Diehl-Schmid, J., Perneczky, R., Clerici, F., Caselli, R., Beuthien-Baumann, B., Kurz, A., Minoshima, S., de Leon, M.: Multicenter Standardized 18F-FDG PET Diagnosis of Mild Cognitive Impairment, Alzheimer’s Disease, and Other Dementias. The Journal of Nuclear Medicine 49(3), 390–398 (2008)

    Article  Google Scholar 

  7. DeJong, K., Spears, W.: Using Genetic Algorithms to Solve NP-Complete Problems. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 124–132 (1989)

    Google Scholar 

  8. Fröhlich, H., Chapelle, O., Schölkopf, B.: Feature selection for support vector machines by means of genetic algorithms. In: 15th IEEE International Conference on Tools with AI (ICTAI 2003), pp. 142–148 (2003)

    Google Scholar 

  9. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature Selection for SVMs. In: Advances in Neural Information Processing Systems, vol. 13 (2000)

    Google Scholar 

  10. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 (2006)

    Article  Google Scholar 

  11. Lanckriet, G., DeBie, T., Christianini, N., Jordan, M., Noble, W.: A statistical framework for genomic data fusion. Bioinformatics 20 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lemoine, B., Rayburn, S., Benton, R. (2010). Data Fusion and Feature Selection for Alzheimer’s Diagnosis. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds) Brain Informatics. BI 2010. Lecture Notes in Computer Science(), vol 6334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15314-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15314-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15313-6

  • Online ISBN: 978-3-642-15314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics