Skip to main content

Hydroacoustic Transducers

  • Chapter
  • First Online:
Piezoceramic Sensors

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 1832 Accesses

Abstract

A hydro-acoustic transducer (HAT) is a vibration system created for reception of radiation and acoustic signals in a water environment [1]. Depending on their functions, transducers are divided into radiators, receivers and reversible transducers. Depending on the energy transformation principle, transducers can be piezoelectric, magnetostrictive, electrodynamic, electromagnetic and electrostatic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.P. Evtyutov, A.E. Kolesnikov, E.A. Korepin et al., Reference Book on Hydroacoustics (Sudostroenie, Leningrad, 1988), p. 552 (in Russian)

    Google Scholar 

  2. G.V. Cats (ed.), Magnetic and Dielectric Devices, P. 1 (Energiya, Moscow, 1964), p. 416 (in Russian)

    Google Scholar 

  3. D.B. Dianov, V.M. Kuznetsov, Influence of transitive layers on rod piezotransducer frequency characteristics. News of Leningrad Electrotechnical Institute Release 63, 60–78 (1968) (in Russian)

    Google Scholar 

  4. G.M. Sverdlin, Applied Hydro-acoustics (Sudostroenie, Leningrad, 1976) (in Russian)

    Google Scholar 

  5. V.N. Tyulin, Introduction in Radiation and Sound-Scattering Theory (Nauka, Moscow, 1976) (in Russian)

    Google Scholar 

  6. V.V. Bogorodskiy, Underwater electro-acoustic transducers: the Directory (Sudostroenie, Leningrad, 1983), p. 248 (in Russian)

    Google Scholar 

  7. G.M. Sverdlin, Yu.P. Ogurtsov, Calculation of Transducers (Publishing House LKI, Leningrad, 1976–1977) (in Russian)

    Google Scholar 

  8. I.P. Golyamina (ed.), Ultrasound (Small Encyclopedia) (Soviet Encyclopedia, Moscow, 1979), p. 400 (in Russian)

    Google Scholar 

  9. A.E. Kolesnikov, Ultrasonic Measurements (Standards Publishing House, Moscow, 1982), p. 248 (in Russian)

    Google Scholar 

  10. M.D. Smaryshev, Yu.Yu. Dobrovolskiy, Hydroacoustic Antennas. Reference Book (Sudostroenie, Leningrad, 1984), p. 300 (in Russian)

    Google Scholar 

  11. ITC, Catalog of Underwater Transducers (ITC, Golta, 1976)

    Google Scholar 

  12. I.M. Pawers, Piezoelectric polymeric emerging hydrophone technology. EASCON’79

    Google Scholar 

  13. G.M. Sverdlin, Hydroacoustic Transducers and Antennas (Sudostroenie, Leningrad, 1980), p. 232 (in Russian)

    Google Scholar 

  14. V.E. Glazanov, Shielding of Hydro-acoustic Antennas (Sudostroenie, Leningrad, 1985), p. 145 (in Russian)

    Google Scholar 

  15. Yu.N. Kuliev et al., Piezoreceivers of Pressure (Publishing House of Rostov University, Rostov, 1976), p. 152 (in Russian)

    Google Scholar 

  16. V.M. Sharapov, M.P. Musienko, E.V. Sharapova, Piezoelectric Sensors, ed. by V.M. Sharapov (Technosphera, Moscow, 2006), p. 632 (in Russian)

    Google Scholar 

  17. S.I. Pugachev (ed.), Piezoceramic Transducers: The Directory (Sudostroenie, Leningrad, 1980), p. 232c (in Russian)

    Google Scholar 

  18. A.G. Sazontov, A.L. Matveyev, N.K. Vdovicheva, Rough surface scattering effect on acoustic coherence and shallow water: theory and observation. JEEE. Oceanic End. 27(3), p. 653 (2002) (in Russian)

    Google Scholar 

  19. A.L. Virovlyansky, V.V. Artelny, A.A. Stromkov, Proc. U.S. – Russia Workshop on Experimental Underwater Acoustics. Nizhny Novgorod. Inst. Appl. Phys. RAS, 33 (2000) (in Russian)

    Google Scholar 

  20. Patent of Russian Federation No 2112326, H04R 17/00, 1998. Central research Institute “Morfizpribor” (Saint-Peterburg). Hydro-acoustic radiator (in Russian)

    Google Scholar 

  21. P.I. Korotin, B.M. Salin, Independent measuring sea complex. Systems of supervision, measurement and control in vibro- and hydro-acoustics. Collected Papers of Institute of Applied Physics of Russian Academy of Sciences – Nizhni Novgorod: IAPH RAS, p. 13 (2002) (in Russian)

    Google Scholar 

  22. V. Sharapov, A. Vladisauskas, K. Bazilo, L. Kunitskaya, Zh. Sotula, Methods of Synthesis of Piezoceramic Transducers: Spatial Energy Force Structure of Piezoelement, ISSN 1392–2114 (Technologia, Kaunas, 2009), Ultragarsas (Ultrasound) 4(64), 44–50

    Google Scholar 

  23. V.A. Kotelnikov, Bases of Radio-Engineering (Gostehizdat, Moscow, 1950) (in Russian)

    Google Scholar 

  24. A.A. Harkevich, Bases of Radio-Engineering (Radio and Communication, Moscow, 1963) (in Russian)

    Google Scholar 

  25. V.M. Sharapov et al., Patent of Ukraine U2010.00620 from 22.01.2010. Piezoelectric transducer of mechanical value (in Ukrainian)

    Google Scholar 

  26. V.M. Pluzhnikov, V.S. Semenov, Piezoelectric Firm Schemes (Energiya, Moscow, 1971), p. 168 (in Russian)

    Google Scholar 

  27. V.M. Sharapov, S.A. Filimonov, K.V. Bazilo, Zh.V. Sotula, L.G. Kunitskaya, Study of piezoceramic adder (summer, summator) based on bimorph piezoelement. Bull. Cherkasy State Technol. Univ. 4 (2009) (in Russian)

    Google Scholar 

  28. V.M. Sharapov, K.V. Bazilo, L.G. Kunitskaya, Zh.V. Sotula, S.A. Filimonov, Adders (summers, summators) based on disk monomorph piezotransformer. Bull. Cherkasy State Technol. Univ., 4 (2009) (in Russian)

    Google Scholar 

  29. V. Sharapov, A. Vladisauskas, S. Filimonov, Bimorph Cylindrical Piezoceramic Scanner for Scanning Probe Nanomicroscopes, ISSN 1392–2114 (Technologia, Kaunas, 2009), Ultragarsas (Ultrasound) 4(64)

    Google Scholar 

  30. V. Sharapov, M. Musienko, Zh. Sotula, L. Kunitskaya, About the Effect of Expansion of Reproduced Frequency Band Be Elektroacoustic Transducer, ISSN 1392–2114 (Technologia, Kaunas, 2009) 3(64)

    Google Scholar 

  31. I.S. Gonorovskiy, Radio-Engineering Networks and Signals (Radio and Communication, Moscow, 1986), p. 512 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Sharapov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharapov, V. (2011). Hydroacoustic Transducers. In: Piezoceramic Sensors. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15311-2_9

Download citation

Publish with us

Policies and ethics