Skip to main content

Qualitative Change to 3-Valued Regions

  • Conference paper
Geographic Information Science (GIScience 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6292))

Included in the following conference series:

Abstract

Regions which evolve over time are a significant aspect of many phenomena in the natural sciences and especially in geographic information science. Examples include areas in which a measured value (e.g. temperature, salinity, height, etc.) exceeds some threshold, as well as moving crowds of people or animals. There is already a well-developed theory of change to regions with crisp boundaries. In this paper we develop a formal model of change for more general 3-valued regions. We extend earlier work which used trees to represent the topological configuration of a system of crisp regions, by introducing trees with an additional node clustering operation. One significant application for the work is to the decentralized monitoring of changes to uncertain regions by wireless sensor networks. Decentralized operations required for monitoring qualitative changes to 3-valued regions are determined and the complexity of the resulting algorithms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, N., Kanhere, S., Ija, S.: The Holes Problem in Wireless Sensor Networks: A Survey. Mobile Computing and Communications Review 9(2), 4–18 (2005)

    Article  Google Scholar 

  2. Antoine-Santoni, A., Santucci, J., de Gentili, E., Costa, B.: Using Wireless Sensor Network for Wildfire Detection. A Discrete Event Approach of Environmental Monitoring Tool. In: Proceedings of the First International Symposium on Environmental Identities and Mediterranean Area (ISEIMA 2006), pp. 115–120. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  3. Automated Local Evaluation in Real-Time—ALERT (accessed on 01/10/2010), http://www.alertsystems.org

  4. Cohn, A., Gotts, N.: The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. In: Burrough, P., Frank, A. (eds.) Geographic Objects with Undetermined Boundaries, pp. 171–187. Taylor and Francis, Bristol (1996)

    Google Scholar 

  5. Duckham, M., Drummond, J.: Assessment of error in digital vector data using fractal geometry. International Journal of Geographical Information Science 14(1), 67–84 (2000)

    Article  Google Scholar 

  6. Duckham, M., Nussbaum, D., Sack, J.-R., Santoro, N.: Efficient, decentralized computation of the topology of spatial regions. IEEE Transactions on Computers (submitted)

    Google Scholar 

  7. Duckham, M., Nittel, S., Worboys, M.: Monitoring dynamic spatial fields using responsive geosensor networks. In: ACM-GIS 2005, Bremen, Germany, pp. 51–60 (2005)

    Google Scholar 

  8. Farah, C., Zhong, C., Worboys, M., Nittel, S.: Detecting topological change using a wireless sensor network. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 55–69. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Ibrahim, Z., Tawik, A.: Spatio-temporal Reasoning for Vague Regions. In: Canadian AI Conference, pp. 308–321 (2004)

    Google Scholar 

  10. Ibrahim, Z., Tawik, A.: A Qualitative Spatio-temporal Abstraction of a Disaster Space. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 274–281. Springer, Heidelberg (2007)

    Google Scholar 

  11. ISO. ISO/TC 211/WG 2, ISO/CD 19107 Geographic information—spatial schema. Technical report, International Standards Organization (2003)

    Google Scholar 

  12. Jiang, J., Worboys, M.: Detecting Basic Topological Changes in Sensor Networks by Local Aggregation. In: 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM GIS 2008 (2008)

    Google Scholar 

  13. Jiang, J., Worboys, M.: Event-based topology for dynamic planar areal objects. International Journal of Geographic Information Science 23(1), 33–60 (2009)

    Article  Google Scholar 

  14. Li, Y., Wang, Z., Song, Y.: Wireless Sensor Network Design for Wildfire Monitoring. In: Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA 2006), Dalian, China, June 21-23, pp. 109–113. IEEE, Los Alamitos (2006)

    Google Scholar 

  15. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Mateo (1996)

    MATH  Google Scholar 

  16. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless Sensor Networks for Habitat Monitoring. In: First ACM International Workshop on Wireless Sensor Networks and Applications (WSNA 2002), Atlanta, GA (2002)

    Google Scholar 

  17. Muller, P.: Topological Spatio-temporal Reasoning and Representation. Computational Intelligence 18(3), 420–450 (2002)

    Article  MathSciNet  Google Scholar 

  18. Randell, D., Cui, Z., Cohn, A.: A Spatial Logic Based on Regions and Connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) KR 1992. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, San Mateo, pp. 165–176. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  19. Sadeq, M.J.: In. network detection of topological change of regions with a wireless sensor network. PhD thesis, University of Melbourne (2009)

    Google Scholar 

  20. Sadeq, M.J., Duckham, M.: Decentralized area computation for spatial regions. In: GIS 2009: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, New York, pp. 432–435 (2009)

    Google Scholar 

  21. Umer, M., Kulik, L., Tanin, E.: Spatial Interpolation in Wireless Sensor Networks: Localized Algorithms for Variogram Modeling and Kriging. Geoinformatica 14, 101–134 (2010)

    Article  Google Scholar 

  22. Werner-Allen, G., Johnsnon, J., Ruiz, M., Lees, J., Welsh, M.: Monitoring Volcanic Eruptions with Wireless Sensor Network. In: Proceedings of the second European Workshop on Wireless Sensor Networks, EWSN 2005 (2005)

    Google Scholar 

  23. Volcano Sensorweb, http://sensorwebs.jpl.nasa.gov/ (accessed on 01/10/2010)

  24. Worboys, M.F., Duckham, M.: GIS: A Computing Perspective, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  25. Worboys, M.F., Duckham, M.: Monitoring qualitative spatiotemporal change for geosensor networks. International Journal of Geographical Information Science 20(10), 1087–1108 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duckham, M., Stell, J., Vasardani, M., Worboys, M. (2010). Qualitative Change to 3-Valued Regions. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds) Geographic Information Science. GIScience 2010. Lecture Notes in Computer Science, vol 6292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15300-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15300-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15299-3

  • Online ISBN: 978-3-642-15300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics