Advertisement

Listing All Sorting Reversals in Quadratic Time

  • Krister M. Swenson
  • Ghada Badr
  • David Sankoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6293)

Abstract

We describe an average-case O(n 2) algorithm to list all reversals on a signed permutation π that, when applied to π, produce a permutation that is closer to the identity. This algorithm is optimal in the sense that, the time it takes to write the list is Ω(n 2) in the worst case.

Keywords

Negative Element Frame Element Quadratic Time Circular Permutation Signed Permutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajana, Y., Lefebvre, J.-F., Tillier, E.R.M., El-Mabrouk, N.: Exploring the set of all minimal sequences of reversals - an application to test the replication-directed reversal hypothesis. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 300–315. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–491 (2001); A preliminary version appeared in WADS 2001, pp. 365–376Google Scholar
  3. 3.
    Baudet, C., Dias, Z.: An Improved Algorithm to Enumerate All Traces that Sort a Signed Permutation by Reversals. In: SIGAPP 2010: Proceedings of the Twenty Fifth Symposium on Applied Computing (2010)Google Scholar
  4. 4.
    Bergeron, A.: A very elementary presentation of the Hannenhalli–Pevzner theory. Discrete Applied Mathematics 146(2), 134–145 (2005)CrossRefGoogle Scholar
  5. 5.
    Bergeron, A., Heber, S., Stoye, J.: Common intervals and sorting by reversals: a marriage of necessity. In: Proc. 2nd European Conf. Comput. Biol. ECCB 2002, pp. 54–63 (2002)Google Scholar
  6. 6.
    Braga, M.D.V., Sagot, M., Scornavacca, C., Tannier, E.: The Solution Space of Sorting by Reversals. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 293–304. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Caprara, A.: On the tightness of the alternating-cycle lower bound for sorting by reversals. J. Combin. Optimization 3, 149–182 (1999)CrossRefGoogle Scholar
  8. 8.
    Hannenhalli, S., Pevzner, P.A.: Transforming mice into men (polynomial algorithm for genomic distance problems). In: Proc. 36th Ann. IEEE Symp. Foundations of Comput. Sci. (FOCS 1995), pp. 581–592. IEEE Press, Piscataway (1995)CrossRefGoogle Scholar
  9. 9.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)CrossRefGoogle Scholar
  10. 10.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Computing 29(3), 880–892 (1999)CrossRefGoogle Scholar
  11. 11.
    Kaplan, H., Verbin, E.: Efficient data structures and a new randomized approach for sorting signed permutations by reversals. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 170–185. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Lefebvre, J.-F., El-Mabrouk, N., Tillier, E.R.M., Sankoff, D.: Detection and validation of single gene inversions. In: Proc. 11th Int’l. Conf. on Intelligent Systems for Mol. Biol. (ISMB 2003). Bioinformatics, vol. 19, pp. i190–i196. Oxford U. Press (2003)Google Scholar
  13. 13.
    Sankoff, D., Haque, L.: The distribution of genomic distance between random genomes. Journal of Computational Biology 13(5), 1005–1012 (2006)CrossRefPubMedGoogle Scholar
  14. 14.
    Sankoff, D., Lefebvre, J.-F., Tillier, E.R.M., Maler, A., El-Mabrouk, N.: The distribution of inversion lengths in bacteria. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 97–108. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Siepel, A.C.: An algorithm to find all sorting reversals. In: Proc. 6th Ann. Int’l. Conf. Comput. Mol. Biol. (RECOMB 2002). ACM Press, New York (2002)Google Scholar
  16. 16.
    Swenson, K.M., Rajan, V., Lin, Y., Moret, B.M.E.: Sorting signed permutations by inversions in O(n logn) time. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 386–399. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Swenson, K.M., Lin, Y., Rajan, V., Moret, B.M.E.: Hurdles hardly have to be heeded. In: Nelson, C.E., Vialette, S. (eds.) RECOMB-CG 2008. LNCS (LNBI), vol. 5267, pp. 239–249. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Tannier, E., Bergeron, A., Sagot, M.-F.: Advances on sorting by reversals. Disc. Appl. Math. 155(6-7), 881–888 (2007)CrossRefGoogle Scholar
  19. 19.
    Tannier, E., Sagot, M.: Sorting by reversals in subquadratic time. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 1–13. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Yang, Y., Szkely, L.A.: On the expectation and variance of reversal distance. Acta Univ. Sapientiae, Mathematica 1(1), 5–20 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Krister M. Swenson
    • 1
    • 2
  • Ghada Badr
    • 3
  • David Sankoff
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of OttawaCanada
  2. 2.LaCIM, UQAMMontréal QuébecCanada
  3. 3.SITE, School of Information Technology and EngineeringUniversity of OttawaCanada

Personalised recommendations