Skip to main content

Reconstruction of Ancestral Genome Subject to Whole Genome Duplication, Speciation, Rearrangement and Loss

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6293))

Abstract

Whole genome duplication (WGD) is a rare evolutionary event that has played a dramatic role in the diversification of most eukaryotic lineages. Given a set of species known to have evolved from a common ancestor through one or many rounds of WGD together with a set of genome rearrangements, and a phylogenetic tree for these species, the goal is to infer the pre-duplication ancestral genomes. We use a two step approach: (1) Compute a score for each possible ancestral adjacency at each internal node of the phylogeny; (2) Combine adjacencies to form ancestral chromosomes. We first apply our method on simulated datasets and show a high accuracy for adjacency prediction. We then infer the pre-duplicated ancestor of a set of 11 yeast species and compare it to a manually assembled ancestral genome obtained by Gordon et al. (2009).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseyev, M.A., Pevzner, P.A.: Colored de bruijn graphs and the genome halving problem. IEEE/ACM TCBB 4(1), 98–107 (2007)

    PubMed  Google Scholar 

  2. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006), http://www.tsp.gatech.edu/concorde/

  3. Chauve, C., Gavranović, H., Ouangraoua, A., Tannier, E.: Yeast ancestral genome reconstructions: the possibilities of computational methods II. Journal of Computational Biology (2010) (in press)

    Google Scholar 

  4. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes. Plos Computational Biology 4(11), e1000234 (2008)

    Google Scholar 

  5. El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM Journal on Computing 32(1), 754–792 (2003)

    Article  Google Scholar 

  6. Gavranović, H., Tannier, E.: Guided genome halving: probably optimal solutions provide good insights into the preduplication ancestral genome of Saccharomyces cerevisiae. In: Pacific Symposium on Biocomputing, vol. 15, pp. 21–30 (2010)

    Google Scholar 

  7. Gordon, J.L., Byrne, K.P., Wolfe, K.H.: Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern saccharomyces cerevisiae genome. PloS Genetics 5(5), e1000485 (2009)

    Google Scholar 

  8. Hedtke, S.M., Townsend, T.M., Hillis, D.M.: Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst. Biol. 55, 522–529 (2006)

    Article  PubMed  Google Scholar 

  9. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Operations Research 21, 498–516 (1973)

    Article  Google Scholar 

  10. Ma, J., et al.: Reconstructing contiguous regions of an ancestral genome. Genome Research 16, 1557–1565 (2007)

    Article  Google Scholar 

  11. Ma, J., et al.: Dupcar: Reconstructing contiguous ancestral regions with duplications. Journal of Computational Biology 15(8), 1–21 (2008)

    Article  CAS  Google Scholar 

  12. Salse, J., et al.: Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. PNAS 106(35), 14908–14913 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness, heuristics and the history of the hemiascomycetes. In: ISMB, pp. 96–104 (2008)

    Google Scholar 

  14. Zheng, C., Zhu, Q., Sankoff, D.: Descendants of whole genome duplication within gene order phylogeny. Journal of Computational Biology 15(8), 947–964 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertrand, D., Gagnon, Y., Blanchette, M., El-Mabrouk, N. (2010). Reconstruction of Ancestral Genome Subject to Whole Genome Duplication, Speciation, Rearrangement and Loss. In: Moulton, V., Singh, M. (eds) Algorithms in Bioinformatics. WABI 2010. Lecture Notes in Computer Science(), vol 6293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15294-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15294-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15293-1

  • Online ISBN: 978-3-642-15294-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics