Skip to main content

Reducing the Worst Case Running Times of a Family of RNA and CFG Problems, Using Valiant’s Approach

  • Conference paper
Algorithms in Bioinformatics (WABI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6293))

Included in the following conference series:

Abstract

We study Valiant’s classical algorithm for Context Free Grammar recognition in sub-cubic time, and extract features that are common to problems on which Valiant’s approach can be applied. Based on this, we describe several problem templates, and formulate generic algorithms that use Valiant’s technique and can be applied to all problems which abide by these templates. These algorithms obtain new worst case running time bounds for a large family of important problems within the world of RNA Secondary Structures and Context Free Grammars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Consortium, A.F.B., Backofen, R., Bernhart, S.H., Flamm, C., Fried, C., Fritzsch, G., Hackermuller, J., Hertel, J., Hofacker, I.L., Missal, K., Mosig, A., Prohaska, S.J., Rose, D., Stadler, P.F., Tanzer, A., Washietl, S., Will, S.: RNAs everywhere: genome-wide annotation of structured RNAs. J. Exp. Zoolog. B. Mol. Dev. Evol. 308, 1–25 (2007)

    Google Scholar 

  2. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single-stranded RNA. PNAS 77, 6309–6313 (1980)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alkan, C., Karakoç, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.: RNA-RNA interaction prediction and antisense RNA target search. Journal of Computational Biology 13, 267–282 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)

    Article  CAS  PubMed  Google Scholar 

  6. Bernhart, S., Tafer, H., Mückstein, U., Flamm, C., Stadler, P., Hofacker, I.: Partition function and base pairing probabilities of RNA heterodimers. Algorithms for Molecular Biology 1, 3 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm for interacting nucleic acid strands. Bioinformatics 25, i365–i373 (2009)

    Google Scholar 

  8. Zhang, K.: Computing similarity between RNA secondary structures. In: INTSYS 1998: Proceedings of the IEEE International Joint Symposia on Intelligence and Systems, p. 126. IEEE Computer Society, Washington (1998)

    Google Scholar 

  9. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM Journal on Applied Mathematics 45, 810–825 (1985)

    Article  Google Scholar 

  10. Sakakibara, Y., Brown, M., Hughey, R., Mian, I., Sjolander, K., Underwood, R., Haussler, D.: Stochastic context-free grammers for tRNA modeling. Nucleic Acids Research 22, 5112 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Teitelbaum, R.: Context-free error analysis by evaluation of algebraic power series. In: STOC, pp. 196–199. ACM, New York (1973)

    Google Scholar 

  12. Dowell, R., Eddy, S.: Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction. BMC bioinformatics 5, 71 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22, e90–e98 (2006)

    Google Scholar 

  14. Cocke, J., Schwartz, J.T.: Programming Languages and Their Compilers. Courant Institute of Mathematical Sciences, New York (1970)

    Google Scholar 

  15. Kasami, T.: An efficient recognition and syntax analysis algorithm for context-free languages. Technical Report AFCRL-65-758, Air Force Cambridge Res. Lab., Bedford Mass. (1965)

    Google Scholar 

  16. Younger, D.H.: Recognition and parsing of context-free languages in time n 3. Information and Control 10, 189–208 (1967)

    Article  Google Scholar 

  17. Valiant, L.: General context-free recognition in less than cubic time. Journal of Computer and System Sciences 10, 308–315 (1975)

    Article  Google Scholar 

  18. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990)

    Article  Google Scholar 

  19. Akutsu, T.: Approximation and exact algorithms for RNA secondary structure prediction and recognition of stochastic context-free languages. Journal of Combinatorial Optimization 3, 321–336 (1999)

    Article  Google Scholar 

  20. Benedí, J., Sánchez, J.: Fast Stochastic Context-Free Parsing: A Stochastic Version of the Valiant Algorithm. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4477, pp. 80–88. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: STOC 2007: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 590–598. ACM, New York (2007)

    Chapter  Google Scholar 

  22. Graham, S.L., Harrison, M.A., Ruzzo, W.L.: An improved context-free recognizer. ACM Transactions on Programming Languages and Systems 2, 415–462 (1980)

    Article  Google Scholar 

  23. Arlazarov, V.L., Dinic, E.A., Kronod, M.A., Faradzev, I.A.: On economical construction of the transitive closure of an oriented graph. Soviet. Math. Dokl. 11, 1209–1210 (1970)

    Google Scholar 

  24. Frid, Y., Gusfield, D.: A simple, practical and complete O\((\frac{n^3}{ \log n})\)-time algorithm for RNA folding using the four-russians speedup. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 97–107. Springer, Heidelberg (2009)

    Google Scholar 

  25. Klein, D., Manning, C.D.: A* parsing: Fast exact viterbi parse selection. In: HLT-NAACL, pp. 119–126 (2003)

    Google Scholar 

  26. Jansson, J., Ng, S., Sung, W., Willy, H.: A faster and more space-efficient algorithm for inferring arc-annotations of RNA sequences through alignment. Algorithmica 46, 223–245 (2006)

    Article  Google Scholar 

  27. Wexler, Y., Zilberstein, C.B.Z., Ziv-Ukelson, M.: A study of accessible motifs and RNA folding complexity. Journal of Computational Biology 14, 856–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. Ziv-Ukelson, M., Gat-Viks, I., Wexler, Y., Shamir, R.: A faster algorithm for RNA co-folding. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 174–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Sparse RNA folding: Time and space efficient algorithms. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 249–262. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Salari, R., Mohl, M., Will, S., Sahinalp, S., Backofen, R.: Time and Space Efficient RNA-RNA Interaction Prediction via Sparse Folding. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 473–490. Springer, Heidelberg (2010)

    Google Scholar 

  31. Havgaard, J., Lyngso, R., Stormo, G., Gorodkin, J.: Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21, 1815–1824 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLOS Computational Biology 3, 65 (2007)

    Article  Google Scholar 

  33. Baker, J.K.: Trainable grammars for speech recognition. The Journal of the Acoustical Society of America 65, S132 (1979)

    Article  Google Scholar 

  34. Goto, K., Geijn, R.: Anatomy of high-performance matrix multiplication. ACM Transactions on Mathematical Software (TOMS) 34, 1–25 (2008)

    Article  Google Scholar 

  35. Robinson, S.: Toward an optimal algorithm for matrix multiplication. News Journal of the Society for Industrial and Applied Mathematics 38 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zakov, S., Tsur, D., Ziv-Ukelson, M. (2010). Reducing the Worst Case Running Times of a Family of RNA and CFG Problems, Using Valiant’s Approach. In: Moulton, V., Singh, M. (eds) Algorithms in Bioinformatics. WABI 2010. Lecture Notes in Computer Science(), vol 6293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15294-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15294-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15293-1

  • Online ISBN: 978-3-642-15294-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics