Sparsification of RNA Structure Prediction Including Pseudoknots

  • Mathias Möhl
  • Raheleh Salari
  • Sebastian Will
  • Rolf Backofen
  • S. Cenk Sahinalp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6293)

Abstract

Although many RNA molecules contain pseudoknots, computational prediction of pseudoknotted RNA structure is still in its infancy due to high running time and space consumption implied by the dynamic programming formulations of the problem. In this paper, we introduce sparsification to significantly speedup the dynamic programming approaches for pseudoknotted RNA structure prediction, which also lower the space requirements. Although sparsification has been applied to a number of RNA-related structure prediction problems in the past few years, we provide the first application of sparsification to pseudoknotted RNA structure prediction specifically and to handling gapped fragments more generally - which has a much more complex recursive structure than other problems to which sparsification has been applied. We show that sparsification, when applied to the fastest, as well as the most general pseudoknotted structure prediction methods available, - respectively the Reeder-Giegerich algorithm and the Rivas-Eddy algorithm - reduces the number of ”candidate” substructures to be considered significantly. In fact, experimental results on the sparsified Reeder-Giegerich algorithm suggest a linear speedup over the unsparsified implementation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sharp, P.A.: The centrality of RNA. Cell 136(4), 577–580 (2009)CrossRefPubMedGoogle Scholar
  2. 2.
    Amaral, P.P., Dinger, M.E., Mercer, T.R., Mattick, J.S.: The eukaryotic genome as an RNA machine. Science 319(5871), 1787–1789 (2008)CrossRefPubMedGoogle Scholar
  3. 3.
    Washietl, S., Pedersen, J.S., Korbel, J.O., Stocsits, C., Gruber, A.R., Hackermuller, J., Hertel, J., Lindemeyer, M., Reiche, K., Tanzer, A., Ucla, C., Wyss, C., Antonarakis, S.E., Denoeud, F., Lagarde, J., Drenkow, J., Kapranov, P., Gingeras, T.R., Guigo, R., Snyder, M., Gerstein, M.B., Reymond, A., Hofacker, I.L., Stadler, P.F.: Structured RNAs in the ENCODE selected regions of the human genome. Genome Res. 17(6), 852–864 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mattick, J.S., Makunin, I.V.: Non-coding RNA. Hum. Mol. Genet. 15 Spec No. 1, R17–R29 (2006)Google Scholar
  5. 5.
    Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse functions. PLoS Biol. 3(6), e213 (2005)Google Scholar
  6. 6.
    Xayaphoummine, A., Bucher, T., Thalmann, F., Isambert, H.: Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc. Natl. Acad. Sci. USA 100(26), 15310–15315 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lyngso, R.B., Pedersen, C.N.S.: Pseudoknots in RNA secondary structures. In: Proc. of the Fourth Annual International Conferences on Computational Molecular Biology (RECOMB 2000). ACM Press, New York (2000) (BRICS Report Series RS-00-1)Google Scholar
  8. 8.
    Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology 285(5), 2053–2068 (1999)CrossRefPubMedGoogle Scholar
  9. 9.
    Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science 210, 277–303 (1999) (Paper as Print Copy)Google Scholar
  10. 10.
    Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)CrossRefGoogle Scholar
  11. 11.
    Deogun, J.S., Donis, R., Komina, O., Ma, F.: RNA secondary structure prediction with simple pseudoknots. In: APBC 2004: Proceedings of the second conference on Asia-Pacific bioinformatics, pp. 239–246. Australian Computer Society, Inc., Darlinghurst (2004)Google Scholar
  12. 12.
    Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24(13), 1664–1677 (2003)CrossRefPubMedGoogle Scholar
  13. 13.
    Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theoretical Computer Science 320(1), 35–50 (2004)CrossRefGoogle Scholar
  15. 15.
    Möhl, M., Will, S., Backofen, R.: Lifting prediction to alignment of RNA pseudoknots. Journal of Computational Biology (2010) (accepted)Google Scholar
  16. 16.
    Wexler, Y., Zilberstein, C.B.Z., Ziv-Ukelson, M.: A study of accessible motifs and rna folding complexity. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M.S. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 473–487. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Sparse RNA folding: Time and space efficient algorithms. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 249–262. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Ziv-Ukelson, M., Gat-Viks, I., Wexler, Y., Shamir, R.: A faster algorithm for RNA co-folding. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 174–185. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Salari, R., Möhl, M., Will, S., Sahinalp, S.C., Backofen, R.: Time and space efficient RNA-RNA interaction prediction via sparse folding. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 473–490. Springer, Heidelberg (2010)Google Scholar
  20. 20.
    van Batenburg, F.H., Gultyaev, A.P., Pleij, C.W., Ng, J., Oliehoek, J.: Pseudobase: a database with RNA pseudoknots. Nucleic Acids Research 28(1), 201–204 (2000)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mathias Möhl
    • 1
  • Raheleh Salari
    • 2
  • Sebastian Will
    • 1
    • 3
  • Rolf Backofen
    • 1
  • S. Cenk Sahinalp
    • 2
  1. 1.Bioinformatics, Institute of Computer ScienceAlbert-Ludwigs-UniversitätFreiburgGermany
  2. 2.Lab for Computational Biology, School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  3. 3.Computation and Biology LabCSAIL, MITCambridgeUSA

Personalised recommendations