Effective Algorithms for Fusion Gene Detection

  • Dan He
  • Eleazar Eskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6293)


Chromosomal rearrangements which shape the genomes of cancer cells often result in fusion genes. Several recent studies have proposed using oligo microarrays targeting fusion junctions to detect fusion genes present in a sample. These approaches design a microarray targeted to discover known fusion genes by using a probe for each possible fusion junction. The hybridization of a sample to one of these probes suggests the presence of a fusion gene. Application of this approach is impractical to detect de-novo gene fusions due to the tremendous number of possible fusion junctions. In this paper we develop a novel approach related to string barcoding which reduces the number of probes necessary for de-novo gene fusion detection by a factor of 3000. The key idea behind our approach is that we utilize probes which match multiple fusion genes where each fusion gene is represented by a unique combination of probes.


Fusion Gene Suffix Tree Minimum Set Cover Integer Linear Programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borneman, J., Chrobak, M., Della Vedova, G., Figueroa, A., Jiang, T.: Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics 17(suppl. 1), S39–S48 (2001)Google Scholar
  2. 2.
    UCSC Genome Browser,
  3. 3.
    Chen, W., et al.: Mapping translocation breakpoints by next-generation sequencing. Genome Res. 18(7), 1143–1149 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chun, S.-M.M., et al.: Identification of leukemia-specific fusion gene transcripts with a novel oligonucleotide array. Mol. Diagn. Ther. 11(1), 21–28 (2007)CrossRefPubMedGoogle Scholar
  5. 5.
  6. 6.
    Dasgupta, B., Konwar, K.M., Mandoiu, I.I., Shvartsman, A.A.: Highly scalable algorithms for robust string barcoding. Int. J. Bioinform. Res. Appl. 1(2), 145–161 (2005)CrossRefPubMedGoogle Scholar
  7. 7.
    Lancia, G., Rizzi, R.: The approximability of the string barcoding problem. Algorithms Mol. Biol. 1, 12 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lu, Q., et al.: A sensitive array-based assay for identifying multiple tmprss2:erg fusion gene variants. Nucleic Acids Res. 36(20), e130 (2008)Google Scholar
  9. 9.
    Maher, C.A., et al.: Transcriptome sequencing to detect gene fusions in cancer. Nature 458(7234), 97–101 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mitelman, F., Johansson, B., Mertens, F.: The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7(4), 233–245 (2007)CrossRefPubMedGoogle Scholar
  11. 11.
    Nasedkina, T.V., et al.: Identification of chromosomal translocations in leukemias by hybridization with oligonucleotide microarrays. Haematologica 87(4), 363–372 (2002)PubMedGoogle Scholar
  12. 12.
    Nasedkina, T.V., et al.: Clinical screening of gene rearrangements in childhood leukemia by using a multiplex polymerase chain reaction-microarray approach. Clin. Cancer Res. 9(15), 5620–5629 (2003)PubMedGoogle Scholar
  13. 13.
    Rash, S., Gusfield, D.: String barcoding: uncovering optimal virus signatures. In: RECOMB 2002: Proceedings of the sixth annual international conference on Computational biology, pp. 254–261. ACM, New York (2002)CrossRefGoogle Scholar
  14. 14.
    Reis-Filho, J.S.: Next-generation sequencing. Breast Cancer Res 11(suppl. 3), S12 (2009)Google Scholar
  15. 15.
    Shi, R.Z., Morrissey, J.M., Rowley, J.D.: Screening and quantification of multiple chromosome translocations in human leukemia. Clin. Chem. 49(7), 1066–1073 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    Skotheim, R.I., et al.: A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol. Cancer 8, 5 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Teixeira, M.R.: Recurrent fusion oncogenes in carcinomas. Crit. Rev. Oncog. 12(3-4), 257–271 (2006)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dan He
    • 1
  • Eleazar Eskin
    • 1
  1. 1.Dept. of Comp. Sci.Univ. of California Los AngelesLos AngelesUSA

Personalised recommendations