An Experimental Study of Quartets MaxCut and Other Supertree Methods

  • M. Shel Swenson
  • Rahul Suri
  • C. Randal Linder
  • Tandy Warnow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6293)


Although many supertree methods have been developed in the last few decades, none has been shown to produce more accurate trees than the popular Matrix Representation with Parsimony (MRP) method. In this paper, we evaluate the performance of several supertree methods based upon the Quartets MaxCut method of Snir and Rao. We show that two of these methods usually outperform MRP and all other supertree methods we studied under many realistic model conditions. In addition, we show that the popular criterion of minimizing the total topological distance to the source trees is only weakly correlated with topological accuracy, and therefore that evaluating supertree methods on biological datasets is problematic.


Source Tree True Tree Topological Distance Biological Dataset Topological Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bansal, M., Burleigh, J.G., Eulenstein, O., Fernández-Baca, D.: Robinson-foulds supertrees (2009)Google Scholar
  2. 2.
    Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10 (1992)CrossRefGoogle Scholar
  3. 3.
    Ben-dor, A., Chor, B., Graur, D., Ophir, R., Pelleg, D.: Constructing phylogenies from quartets: Elucidation of eutherian superordinal relationships. Journal of Computational Biology 5(3), 377–390 (1998), Earlier version appeared in RECOMB 1998 (1998)Google Scholar
  4. 4.
    Bininda-Emonds, O.R.P.: The evolution of supertrees. Trends in Ecology and Evolution 19, 315–322 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    Bininda-Emonds, O.R.P.: Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life. Computational Biology. Kluwer Academic, Dordrecht (2004)CrossRefGoogle Scholar
  6. 6.
    Bolaender, H., Fellows, M., Warnow, T.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  7. 7.
    Burleigh, J.G., Eulenstein, O., Fernández-Baca, D., Sanderson, M.J.: MRF supertrees. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life, pp. 65–86. Kluwer Academic, Dordrecht (2004)CrossRefGoogle Scholar
  8. 8.
    Chen, D., Diao, L., Eulenstein, O., Fernández-Baca, D., Sanderson, M.J.: Flipping: a supertree construction method. In: Bioconsensus. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 61, pp. 135–160. American Mathematical Society-DIMACS, Providence (2003)CrossRefGoogle Scholar
  9. 9.
    Chen, D., Eulenstein, O., Fernández-Baca, D., Burleigh, J.G.: Improved heuristics for minimum-flip supertree construction. Evol. Bioinform. 2, 401–410 (2006)Google Scholar
  10. 10.
    Creevey, C.J., McInerney, J.O.: Clann: investigating phylogenetic information through supertree analyses. Bioinformatics 21(3), 390–392 (2005)CrossRefPubMedGoogle Scholar
  11. 11.
    Dress, A., Steel, M.: Convex tree realizations of partitions. Applied Mathematics Letters 5(3), 3–6 (1992)CrossRefGoogle Scholar
  12. 12.
    Foulds, L.R., Graham, R.L.: The steiner problem in phylogeny is NP-complete. Adv. in Appl. Math. 3(43-49), 299 (1982)Google Scholar
  13. 13.
    Holland, B., Conner, G., Huber, K., Moulton, V.: Imputing supertrees and supernetworks from quartets. Syst. Biol. 57(1), 299–308 (2007)Google Scholar
  14. 14.
    Jiang, T., Kearney, P., Li, M.: Orchestrating quartets: approximation and data correction. In: Motwani, R. (ed.) Proceedings of the 39th IEEE Annual Symposium on Foundations of Computer Science, Los Alamitos, CA., pp. 416–425 (1998)Google Scholar
  15. 15.
    Jiang, T., Kearney, P., Li, M.: A polynomial-time approximation scheme for inferring evolutionary trees from quartet topologies and its applications. SIAM J. Comput. 30(6), 1924–1961 (2001)CrossRefGoogle Scholar
  16. 16.
    John, K.S., Warnow, T., Moret, B.M.E., Vawter, L.: Performance study of phylogenetic methods: (unweighted) quartet methods and neighbor-joining. Journal of Algorithms 48, 173–193 (2003)Google Scholar
  17. 17.
    Nixon, K.C.: The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414 (1999)CrossRefGoogle Scholar
  18. 18.
    Ragan, M.A.: Phylogenetic inference based on matrix representation of trees. Mol. Phylo. Evol. 1, 53–58 (1992)CrossRefGoogle Scholar
  19. 19.
    Ranwez, V., Berry, V., Criscuolo, A., Fabre, P.H., Guillemot, S., Scornavacca, C., Douzery, E.J.P.: PhySIC: a veto supertree method with desirable properties. Syst. Biol. 56(5), 798–817 (2007)CrossRefPubMedGoogle Scholar
  20. 20.
    Ranwez, V., Gascuel, O.: Quartet-Based phylogenetic inference: Improvements and limits. Mol. Biol. Evol. 18(6), 1103–1116 (2001)CrossRefPubMedGoogle Scholar
  21. 21.
    Snir, S., Rao, S.: Quartets MaxCut: a divide and conquer quartets algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. (2008)Google Scholar
  22. 22.
    Snir, S., Warnow, T., Rao, S.: Short quartet puzzling: A new Quartet-Based phylogeny reconstruction algorithm. J. Comput. Biol. 15(1), 91–103 (2008)CrossRefPubMedGoogle Scholar
  23. 23.
    Stamatakis, A.: RAxML-NI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)CrossRefPubMedGoogle Scholar
  24. 24.
    Strimmer, K., von Haeseler, A.: Quartet puzzling: A quartet maximim-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13(7), 964–969 (1996)CrossRefGoogle Scholar
  25. 25.
    Swenson, M.S., Barbançon, F., Warnow, T., Linder, C.R.: A simulation study comparing supertree and combined analysis methods using SMIDGen. Algorithms for Molecular Biology 5, 8 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor experience. Concurrency and Computation: Practice and Experience 17, 323–356 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Shel Swenson
    • 1
    • 2
  • Rahul Suri
    • 1
  • C. Randal Linder
    • 3
  • Tandy Warnow
    • 1
  1. 1.Department of Computer ScienceThe University of Texas at AustinUSA
  2. 2.Department of MathematicsThe University of Texas at AustinUSA
  3. 3.Section of Integrative BiologyThe University of Texas at AustinUSA

Personalised recommendations