Skip to main content

Efficient Subgraph Frequency Estimation with G-Tries

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6293))

Abstract

Many biological networks contain recurring overrepresented elements, called network motifs. Finding these substructures is a computationally hard task related to graph isomorphism. G-Tries are an efficient data structure, based on multiway trees, capable of efficiently identifying common substructures in a set of subgraphs. They are highly successful in constraining the search space when finding the occurrences of those subgraphs in a larger original graph. This leads to speedups up to 100 times faster than previous methods that aim for exact and complete results. In this paper we present a new efficient sampling algorithm for subgraph frequency estimation based on g-tries. It is able to uniformly traverse a fraction of the search space, providing an accurate unbiased estimation of subgraph frequencies. Our results show that in the same amount of time our algorithm achieves better precision than previous methods, as it is able to sustain higher sampling speeds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, I., Albert, R.: Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 20(18), 3346–3352 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucl. Acids Res. 31(9), 2443–2450 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ciriello, G., Guerra, C.: A review on models and algorithms for motif discovery in protein-protein interaction networks. Brief Funct. Genomic Proteomic 7(2), 147–156 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. da Costa Luciano, F., Oliveira Jr., O.N., Travieso, G., Rodrigues, F.A., Villas Boas, P.R., Antiqueira, L., Viana, M.P., da Rocha, L.E.C.: Analyzing and modeling real-world phenomena with complex networks: A survey of applications. ArXiv e-prints 0711(3199) (2007)

    Google Scholar 

  5. Dobrin, R., Beg, Q.K., Barabasi, A., Oltvai, Z.: Aggregation of topological motifs in the escherichia coli transcriptional regulatory network. BMC Bioinformatics 5, 10 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Duch, J., Arenas, A.: Community identification using extremal optimization. Phys. Rev. E. (Stat. Nonlin. Soft Matter Phys.) 72, 027104 (2005)

    Google Scholar 

  7. Grochow, J., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. Research in Computational Molecular Biology, 92–106 (2007)

    Google Scholar 

  8. Itzkovitz, S., Levitt, R., Kashtan, N., Milo, R., Itzkovitz, M., Alon, U.: Coarse-graining and self-dissimilarity of complex networks. Phys. Rev. E (Stat. Nonlin. Soft Matter Phys.) 71(1 Pt. 2) (January 2005)

    Google Scholar 

  9. Juszczyszyn, K., Kazienko, P., Musial, K.: Local topology of social network based on motif analysis. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 97–105. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Kashani, Z., Ahrabian, H., Elahi, E., Nowzari-Dalini, A., Ansari, E., Asadi, S., Mohammadi, S., Schreiber, F., Masoudi-Nejad, A.: Kavosh: a new algorithm for finding network motifs. BMC Bioinformatics 10(1), 318 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: IEEE International Conference on Data Mining, p. 313 (2001)

    Google Scholar 

  13. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. can geographic isolation explain this unique trait? Behavioral Ecology and Sociobiology 54(4), 396–405 (2003)

    Article  Google Scholar 

  14. McKay, B.: Practical graph isomorphism. Cong. Numerantium 30, 45–87 (1981)

    Google Scholar 

  15. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Omidi, S., Schreiber, F., Masoudi-Nejad, A.: Moda: An efficient algorithm for network motif discovery in biological networks. Genes & genetic systems 84(5), 385–395 (2009)

    Article  Google Scholar 

  17. Ribeiro, P., Silva, F.: G-tries: an efficient data structure for discovering network motifs. In: ACM Symposium on Applied Computing (2010)

    Google Scholar 

  18. Ribeiro, P., Silva, F., Kaiser, M.: Strategies for network motifs discovery. In: 5th IEEE International Conference on e-Science. IEEE CS Press, Oxford (2009)

    Google Scholar 

  19. Schreiber, F., Schwobbermeyer, H.: Towards motif detection in networks: Frequency concepts and flexible search. In: Proc. of the Int. Workshop on Network Tools and Applications in Biology (NETTAB 2004), pp. 91–102 (2004)

    Google Scholar 

  20. Sporns, O., Kotter, R.: Motifs in brain networks. PLoS Biology 2 (2004)

    Google Scholar 

  21. Valverde, S., Solé, R.V.: Network motifs in computational graphs: A case study in software architecture. Phys. Rev. E (Stat. Nonlin. Soft Matter Phys.) 72(2) (2005)

    Google Scholar 

  22. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput. Biol. Bioinformatics 3(4), 347–359 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ribeiro, P., Silva, F. (2010). Efficient Subgraph Frequency Estimation with G-Tries. In: Moulton, V., Singh, M. (eds) Algorithms in Bioinformatics. WABI 2010. Lecture Notes in Computer Science(), vol 6293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15294-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15294-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15293-1

  • Online ISBN: 978-3-642-15294-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics