Fixed-Parameter Algorithm for Haplotype Inferences on General Pedigrees with Small Number of Sites

  • Duong D. Doan
  • Patricia A. Evans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6293)


The problem of computing the minimum number of recombination events for general pedigrees with a small number of sites is investigated. We show that this NP-hard problem can be parametrically reduced to the Bipartization by Edge Removal problem with additional parity constraints. The problem can be solved by an \(O(2^{k}2^{m^{2}}n^{2}m^{3})\) exact algorithm, where n is the number of members, m is the number of sites, and k is the number of recombination events.


Recombination Event Signed Graph Positive Edge Negative Edge Haplotype Inference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chan, B.M.-Y., et al.: Linear-time haplotype inference on pedigrees without recombinations. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 56–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, McGraw-Hill (2001)Google Scholar
  3. 3.
    Doan, D.D., Evans, P.A., Horton, J.D.: A Near-Linear Time Algorithm for Haplotype Determination on General Pedigrees. Submitted to Journal of Computational Biology (2009) (Submission ID: JCB-2009-0133)Google Scholar
  4. 4.
    Doan, D.D., Evans, P.A.: Fixed-Parameter Algorithm for General Pedigrees with a Single Pair of Sites. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds.) ISBRA 2010. LNCS, vol. 6053, pp. 29–37. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Guo, J., et al.: Compression-Based Fixed-Parameter Algorithms for Feedback Vertex Set and Edge Bipartization. Journal of Computer and System Sciences 72(8), 1386–1396 (2006)CrossRefGoogle Scholar
  6. 6.
    Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)CrossRefGoogle Scholar
  7. 7.
    Li, J., Jiang, T.: An exact solution for finding minimum recombinant haplotype configurations on pedigrees with missing data by integer linear programming. In: Proceedings of Research in Computational Molecular Biology, pp. 20–29 (2004)Google Scholar
  8. 8.
    Liu, L., Chen, X., Xiao, J., Jiang, T.: Complexity and approximation of the minimum recombinant haplotype configuration problem. Theoretical Computer Science 378, 316–330 (2007)CrossRefGoogle Scholar
  9. 9.
    Picard, J., Queyranne, M.: On the structure of all minimum cuts in a network and applications. Mathematical Programming Study 13, 8–16 (1980)CrossRefGoogle Scholar
  10. 10.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  11. 11.
    Qian, D., Beckmann, L.: Minimum-recombinant haplotyping in pedigrees. American Journal of Human Genetics 70(6), 1434–1445 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Xiao, J., Lou, T., Jiang, T.: An efficient algorithm for haplotype inference on pedigrees with a small number of recombinants. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 325–336. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Xu, S.: The line index and minimum cut of weighted graphs. European Journal of Operational Research 109, 672–682 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Duong D. Doan
    • 1
  • Patricia A. Evans
    • 1
  1. 1.Faculty of Computer ScienceUniversity of New Brunswick, FrederictonNew BrunswickCanada

Personalised recommendations