Advertisement

On Sufficient Conditions for Integrability of a Planar System of ODEs Near a Degenerate Stationary Point

  • Victor Edneral
  • Valery G. Romanovski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6244)

Abstract

We consider an autonomous system of ordinary differential equations, which is solved with respect to derivatives. To study the local integrability of the system near a degenerate stationary point we use an approach based on the Power Geometry Method and on the computation of resonant normal forms. For a planar system depending on five parameters we give four series of conditions on parameters of the system for which it is integrable near the degenerate stationary point.

Keywords

planar ordinary differential equations integrability resonant normal form power geometry computer algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruno, A.D., Edneral, V.F.: Algorithmic analysis of local integrability. Dokl. Akademii Nauk 424(3), 299–303 (2009) (Russian) = Doklady Mathem. 79(1), 48–52 (2009) (English)Google Scholar
  2. 2.
    Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Fizmatlit, Moscow (1998) (Russian) = Elsevier Science, Amsterdam (2000) (English)Google Scholar
  3. 3.
    Bruno, A.D.: Local Methods in Nonlinear Differential Equations. Nauka, Moscow (1979) (Russian) = Springer-Verlag, Berlin (1989) (English)Google Scholar
  4. 4.
    Bruno, A.D.: Analytical form of differential equations (I,II). Trudy Moskov. Mat. Obsc. 25, 119–262 (1971); 26, 199–239 (1972) (Russian) = Trans. Moscow Math. Soc. 25, 131–288 (1971); 26, 199–239 (1972) (English) Google Scholar
  5. 5.
    Bruno, A.D., Edneral, V.F.: On Integrability of a Planar System of ODE’s near Degenerate Stationary Point. Zapiski Nauchnykh Seminarov POMI 373, 34–47 (2009) (Russian)zbMATHGoogle Scholar
  6. 6.
    Bruno, A.D., Edneral, V.F.: On Integrability of a Planar ODE System of near Degenerate Stationary Point. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 45–53. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Amelkin, V.V., Lukashevich, N.A., Sadovskii, A.P.: Nonlinear Oscillations in Second Order Systems. BSU, Minsk (1982) (in Russian)Google Scholar
  8. 8.
    Liu, Y., Li, J.: New study on the center problem and bifurcations of limit cycles for the Lyapunov system (I). Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19(11), 3791–3801 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Algaba, A., Gamero, E., Garcia, C.: The integrability problem for a class of planar systems. Nonlinearity 22, 395–420 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Edneral, V.F.: On algorithm of the normal form building. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 134–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Bateman, H., Erdêlyi, A.: Higer Transcendental Functions, vol. 1. McGraw-Hill Book Company, Inc., New York (1953)Google Scholar
  12. 12.
    Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhüser, Boston (2009)zbMATHGoogle Scholar
  13. 13.
    Decker, W., Pfister, G., Schönemann, H.A.: Singular 2.0 library for computing the primary decomposition and radical of ideals primdec.lib (2001)Google Scholar
  14. 14.
    Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2005), http://www.singular.uni-kl.de
  15. 15.
    Christopher, C., Mardešić, P., Rousseau, C.: Normalizable, integrable, and linearizable saddle points for complex quadratic systems in C 2. J. Dyn. Control Sys. 9, 311–363 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Victor Edneral
    • 1
  • Valery G. Romanovski
    • 2
    • 3
  1. 1.Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State UniversityRussia
  2. 2.CAMTP - Center for Applied Mathematics and Theoretical PhysicsUniversity of MariborMariborSlovenia
  3. 3.Faculty of Natural Science and MathematicsUniversity of MariborMariborSlovenia

Personalised recommendations