Advertisement

On Multivariate Homogeneous Polynomial Decomposition

  • Paula Bustillo
  • Jaime Gutierrez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6244)

Abstract

An algorithm for decomposing a list of homogeneous polynomials in several variables of the same degree was given in [2]. We show that there is a bijective relation among these decompositions and intermediate-algebras of a special kind, but the relation cannot be extended to intermediate fields. We also try to find the dimension of the decomposable lists over an algebraically closed field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faugère, J.C., Perret, L.: Cryptanalysis of \(2{\rm R}\sp -\) schemes. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 357–372. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Faugère, J.C., Perret, L.: An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography. Journal of Symbolic Computation 44, 1676–1689 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Faugère, J.C., Perret, L.: High order derivatives and decomposition of multivariate polynomials. In: Kaltofen, E. (ed.) ISSAC 2009: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, Seoul, Korea, pp. 207–214. ACM, New York (2009)Google Scholar
  4. 4.
    Gathen, J.v.z.: The number of decomposable univariate polynomials. In: ISSAC 2009: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, pp. 359–366. ACM, New York (2009) (extended abstract)CrossRefGoogle Scholar
  5. 5.
    von zur Gathen, J.: Counting decomposable multivariate polynomials. Technical Report arXiv:0811.4726 (2008)Google Scholar
  6. 6.
    von zur Gathen, J., Gutierrez, J., Rubio, R.: Multivariate polynomial decomposition. Appl. Algebra Engrg. Comm. Comput. 14, 11–31 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  8. 8.
    Mumford, D.: The red book of varieties and schemes. In: Thalheim, B. (ed.) Semantics in Databases 1995. LNCS, vol. 1358. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Patarin, J., Goubin, L.: Asymmetric cryptography wiht s-boxes. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 369–380. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Ye, D., Dai, Z., Lam, K.Y.: Decomposing attacks on asymmetric cryptography based on mapping compositions. J. Cryptology 14, 137–150 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Paula Bustillo
    • 1
  • Jaime Gutierrez
    • 1
  1. 1.Universidad de CantabriaSantanderSpain

Personalised recommendations