Advertisement

Elliptische Differentialgleichungen

Chapter
  • 4.2k Downloads
Part of the Springer-Lehrbuch Masterclass book series (MASTERCLASS)

Zusammenfassung

In diesem Kapitel ist Ω immer ein beschränktes Gebiet des \(\mathbb{R}^n\) und alle Funktionenräume sind reell.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [AD92]
    Apel, Th., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method. Computing, 47, 277–293 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [Vel76]
    Velte, W.: Direkte Methoden der Variationsrechnung. Teubner Studienbücher, Teubner, Stuttgart (1976)Google Scholar
  3. [Cia78]
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)Google Scholar
  4. [Bra92]
    Braess, D.: Finite Elemente. Springer, Berlin Heidelberg New York (1992)zbMATHGoogle Scholar
  5. [HS67]
    Hanna, M.S., Smith, K.T.: Some remarks on the Dirichlet problem in piecewise smooth domains. Comm. Pure Appl. Math., 20, 575–593 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [LM72]
    Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications I. Springer, Berlin Heidelberg New York (1972)zbMATHGoogle Scholar
  7. [Agm65]
    Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton, N.J. (1965)zbMATHGoogle Scholar
  8. [Kad64]
    Kadlec, J.: On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set. Czech. Math. J., 14, 386–393 (1964)MathSciNetGoogle Scholar
  9. [Lad85]
    Ladyzhenskaja, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, Berlin Heidelberg New York (1985)Google Scholar
  10. [Dob]
    Dobrowolski, M.: Finite Elemente. Vorlesungsskript, Würzburg (1996) (unter Internetadresse http://www.mathematik.uni-wuerzburg.de/∼dobro/pub/index.html erhältlich)

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Universität Würzburg, Institut für MathematikWürzburgDeutschland

Personalised recommendations