Skip to main content

Integral Relations for the Surface Transfer Coefficients

  • Chapter
  • First Online:
Multicomponent Interfacial Transport

Part of the book series: Springer Theses ((Springer Theses))

  • 706 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, that \(\sum\nolimits_{i=1}^{n-1}{J_{i}\, \nabla_{\perp}{\frac{\psi_{i}}{T}}} =\sum\nolimits_{i=1}^{n}{J_{i}\, \nabla_{\perp}{\frac{\mu_{i}}{T}}}.\)

  2. 2.

    The details of this procedure are given in Appendix 8.A.

Reference

  1. Johannessen E, Bedeaux D (2006) Integral relations for the heat and mass transfer resistivities of the liquid–vapor interface. Phys A 370:258–274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Glavatskiy .

Local Resistivities

Local Resistivities

We need to relate the resistivities \(r^{e}\) from Eq. 8.23 to the resistivities \(r^{\,\prime}\) from Eq. 8.29. This is done by comparing the coefficients at the same fluxes in these equations. To do this we need to translate the set of fluxes used in Eq. 8.29 \(\{J_{q}^{\,\prime},\,J_{1}, \ldots, J_{n-1}\}\), to the set of fluxes used in Eq. 8.23, \(\{J_{e},\,J_{\xi_{1}}, \ldots, J_{\xi_{n}}\}\). This is done with the help of the relation

$$ \begin{aligned} & J_{i} = {J_{\xi}}_{i} - \xi_{i}\sum_{k=1}^{n}{J_{\xi_{k}}}\\ & J_{q}^{\,\prime}= J_{e} - \sum_{k=1}^{n}{\tilde{h}_{k}\,J_{\xi_{k}}}\\ \end{aligned} $$
(8.40)

Substituting \(J_{q}^{\,\prime}\) and \(J_{i}\) into the first of Eq. 8.29 we obtain

$$ \nabla_{\perp}\frac{1}{T} = r^{\,\prime}_{qq}\,J_{e} + \sum\limits_{i=1}^{n-1}{J_{\xi}}_{i}\left( r^{\,\prime}_{qi} - r^{\,\prime}_{qq}\,\tilde{h}_{i} - \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{qk}\,\xi_{k}}\right) - J_{\xi_{n}}\left(r^{\,\prime}_{qq}\,\tilde{h}_{n} + \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{qk}\,\xi_{k}}\right) $$
(8.41)

Comparing it with the first of Eq. 8.23 we obtain

$$ \begin{aligned} & r^{e}_{qq} = r^{\,\prime}_{qq} \\ & r^{e}_{qi} = - r^{\,\prime}_{qq}\,\tilde{h}_{i} - \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{qk}\,\xi_{k}} + r^{\,\prime}_{qi},\quad i=\overline{1,n-1} \\ & r^{e}_{qn} = - r^{\,\prime}_{qq}\,\tilde{h}_{n} - \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{qk}\,\xi_{k}} \\ \end{aligned} $$
(8.42)

which are the first three equations of Eq. 8.32.

In order to obtain the remaining relations we consider the second of Eq. 8.23, which gives

$$ \begin{aligned} -\sum\limits_{j=1}^{n}{\xi_{j}\,\nabla_{\perp}\frac{\tilde{\mu}_{j}}{T}} &=J_{e}\sum_{j=1}^{n}{r^{e}_{jq}\,\xi_{j}} + \sum\limits_{i=1}^{n}{J_{\xi}}_{i}\sum_{j=1}^{n}{r^{e}_{ji}\,\xi_{j}} \\ \left(-\nabla_{\perp}\frac{\tilde{\mu}_{j}}{T}\right) - \left(-\nabla_{\perp}\frac{\tilde{\mu}_{n}}{T}\right) &= J_{e}(r^{e}_{jq}-r^{e}_{nq}) + \sum\limits_{i=1}^{n}{J_{\xi}}_{i}(r^{e}_{ji}-r^{e}_{ni}),\quad j=\overline{1,n-1} \end{aligned}$$
(8.43)

Furthermore, we use Eq. 8.8. Together with the second of Eq. 8.29 it gives

$$ \begin{aligned} & -\sum\limits_{i=1}^{n}{\xi_{i}\,\nabla_{\perp}\frac{\tilde{\mu}_{i}}{T}} = -\sum\limits_{i=1}^{n}{\xi_{i}\,\tilde{h}_{i}\,\nabla_{\perp}\frac{1}{T}}\\ & -\nabla_{\perp}\frac{\psi_{j}}{T} = -\eta_{j}\,\nabla_{\perp}\frac{1}{T} + r^{\,\prime}_{jq}\,J_{q}^{\,\prime} + \sum\limits_{i=1}^{n-1}{r^{\,\prime}_{ji}\,J_{i}} \end{aligned} $$
(8.44)

Substituting \(\nabla_{\perp}(1/T)\) from Eq. 8.41 and \(J_{q}^{\,\prime}\) and \(J_{i}\) from Eq. 8.40 we obtain the left-hand side of Eq. 8.44 expressed in terms of the fluxes \(J_{e}\) and \({J_{\xi}}_{i}\) and the resistivities \(r^{\,\prime}\). Comparing the result with Eq. 8.43 we obtain the following equations sets

$$ \begin{aligned} & \sum\limits_{k=1}^{n}{r^{e}_{kq}\,\xi_{k}} = - r^{\,\prime}_{qq}\sum\limits_{k=1}^{n}{\xi_{k}\,\tilde{h}_{k}}\\ & r^{e}_{jq} - r^{e}_{nq} = - r^{\,\prime}_{qq}\,\eta_{j} + r^{\,\prime}_{jq}, \quad j=\overline{1,n-1} \\ \end{aligned} $$
(8.45a)
$$ \begin{aligned} \sum\limits_{k=1}^{n}{r^{e}_{kj}\,\xi_{k}} &= \left(r^{\,\prime}_{qq}\,\tilde{h}_{i} + \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{qk}\,\xi_{k}} - r^{\,\prime}_{qi}\right) \sum\limits_{k=1}^{n}{\xi_{k}\,\tilde{h}_{k}}\\ r^{e}_{ji} - r^{e}_{ni} &= \left(r^{\,\prime}_{qq}\,\tilde{h}_{i} + \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{qk}\,\xi_{k}} - r^{\,\prime}_{qi}\right)\eta_{j}\\ \quad - \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{jk}\,\xi_{k}} - r^{\,\prime}_{jq}\,\tilde{h}_{i} + r^{\,\prime}_{ji}, \quad j,i=\overline{1,n-1}\\ \end{aligned} $$
(8.45b)
$$ \begin{aligned} & \sum\limits_{k=1}^{n}{r^{e}_{kn}\xi_{k}} = \left(r^{\,\prime}_{qq}\,\tilde{h}_{n} + \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{qk}\xi_{k}}\right) \sum\limits_{k=1}^{n}{\xi_{k}\,\tilde{h}_{k}}\\ & r^{e}_{jn} - r^{e}_{nn} = \left(r^{\,\prime}_{qq}\,\tilde{h}_{n} + \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{qk}\xi_{k}}\right)\eta_{j} \\ &\quad -\sum\limits_{k=1}^{n-1}{r^{\,\prime}_{jk}\xi_{k}} - r^{\,\prime}_{jq}\,\tilde{h}_{n}, \quad j=\overline{1,n-1}\\ \end{aligned} $$
(8.45c)

solving which we obtain the relations (8.46) between the remaining resistivities.

As one can confirm the symmetry of the \(r^{\,\prime}\)-matrix leads to the symmetry of the \(r^{e}\)-matrix and vice versa. We therefore do not give the expressions for \(r^{e}_{jq},r^{e}_{nq}\) and \(r^{e}_{jn}\) in Eq. 8.32.

The relations (8.33) between the \(r^{e}\)- and \(r\)-resistivities are derived in the similar manner.

$$ \begin{aligned} & r^{e}_{jq} = -r^{\,\prime}_{qq}\,\tilde{h}_{j} - \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{kq}\,\xi_{k}} + r^{\,\prime}_{jq},\quad j=\overline{1,n-1}\\ & r^{e}_{nq} = -r^{\,\prime}_{qq}\,\tilde{h}_{n} - \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{kq}\,\xi_{k}} \\ & r^{e}_{ji} = r^{\,\prime}_{qq}\,\tilde{h}_{j}\tilde{h}_{i} + \sum\limits_{k=1}^{n-1}{\xi_{k}\left(r^{\,\prime}_{kq}\,\tilde{h}_{i}+r^{\,\prime}_{qk}\,\tilde{h}_{j}\right)} -\left(r^{\,\prime}_{jq}\,\tilde{h}_{i}+r^{\,\prime}_{qi}\,\tilde{h}_{j}\right) \\ &\quad + \sum\limits_{k=1}^{n-1}\sum\limits_{l=1}^{n-1}{r^{\,\prime}_{kl}\,\xi_{k}\xi_{l}} - \sum\limits_{k=1}^{n-1}{\xi_{k}\left(r^{\,\prime}_{ki} + r^{\,\prime}_{jk}\right)} + r^{\,\prime}_{ji} , \quad j,i=\overline{1,n-1}\\ & r^{e}_{jn} = r^{\,\prime}_{qq}\,\tilde{h}_{j}\tilde{h}_{n} + \sum\limits_{k=1}^{n-1}{\xi_{k}\left(r^{\,\prime}_{kq}\,\tilde{h}_{n}+r^{\,\prime}_{qk}\,\tilde{h}_{j}\right)} - r^{\,\prime}_{jq}\,\tilde{h}_{n} \\ &\quad + \sum\limits_{k=1}^{n-1}\sum\limits_{l=1}^{n-1}{r^{\,\prime}_{kl}\,\xi_{k}\xi_{l}} - \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{jk}\,\xi_{k}}, \quad j=\overline{1,n-1}\\ & r^{e}_{ni} = r^{\,\prime}_{qq}\,\tilde{h}_{n}\tilde{h}_{i} + \sum\limits_{k=1}^{n-1}{\xi_{k}\left(r^{\,\prime}_{kq}\,\tilde{h}_{i}+r^{\,\prime}_{qk}\,\tilde{h}_{n}\right)} - r^{\,\prime}_{qi}\,\tilde{h}_{n} \\ &\quad + \sum\limits_{k=1}^{n-1}\sum\limits_{l=1}^{n-1}{r^{\,\prime}_{kl}\,\xi_{k}\xi_{l}} - \sum\limits_{k=1}^{n-1}{r^{\,\prime}_{ki}\,\xi_{k}}, \quad i=\overline{1,n-1}\\ & r^{e}_{nn} = r^{\,\prime}_{qq}\,\tilde{h}_{n}^{2} + \tilde{h}_{n}\sum\limits_{k=1}^{n-1}\,{\xi_{k}\left(r^{\,\prime}_{kq}+r^{\,\prime}_{qk}\right)} + \sum\limits_{k=1}^{n-1}\sum\limits_{l=1}^{n-1}{r^{\,\prime}_{kl}\,\xi_{k}\xi_{l}} \\ \end{aligned} $$
(8.46)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glavatskiy, K. (2011). Integral Relations for the Surface Transfer Coefficients. In: Multicomponent Interfacial Transport. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15266-5_8

Download citation

Publish with us

Policies and ethics