Skip to main content

Non-Equilibrium Continuous Description

  • Chapter
  • First Online:
  • 719 Accesses

Part of the book series: Springer Theses ((Springer Theses))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Since then there have appeared some works addressing the similar issues [79]. See Sect. 1.4.1 for a review.

  2. 2.

    We note, that Eq. 3.27 is the expression for the specific Helmholtz energy of a non-ideal mixture. This is accounted by using the equation of state of a real mixture, see Sect. 3.4.1. The reference to an ideal mixture is needed only for the determination of the integration constant.

  3. 3.

    Note that \(\sum\nolimits_{k=1}^{n-1}{\psi_{k}\,{{\mathbf{J}}}_{k}} = \sum\nolimits_{k=1}^{n}{\mu_{k}\,{{\mathbf{J}}}_{k}}\) and \({\sum\nolimits_{k=1}^{n-1}{{{\mathbf{J}}}_{k}\cdot \nabla{(\psi_{k}/T)}}}={\sum\nolimits_{k=1}^{n}{{\mathbf{J}}}_{k}\cdot \nabla{(\mu_{k}/T).}}\)

  4. 4.

    One could, in fact, do this identification immediately after the introduction of this velocity in Eq. 3.14. We consider it more convenient to do it here, however.

  5. 5.

    Note, that if the product of two tensorial quantities of rank \(\hbox{r}>0\) is written without \(\cdot,\) it means that this is the product, not the internal product.

References

  1. Bedeaux D, Johannessen E, Røsjorde A (2003) The nonequilibrium van der Waals square gradient model. (I). The model and its numerical solution. Phys A 330:329

    Article  Google Scholar 

  2. Johannessen E, Bedeaux D (2003) The nonequilibrium van der Waals square gradient model. (II). Local equilibrium of the Gibbs surface. Phys A 330:354

    Article  Google Scholar 

  3. Johannessen E, Bedeaux D (2004) The nonequilibrium van der Waals square gradient model. (III). Heat and mass transfer coefficients. Phys A 336:252

    Article  CAS  Google Scholar 

  4. Hohenberg PC, Halperin BJ (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49:435

    Article  CAS  Google Scholar 

  5. Halperin BJ, Hohenberg PC, Ma SK (1974) Renormalization-group methods for critical dynamics: I. Recursion relations and effects of energy conservation. Phys Rev B 10:139

    Article  CAS  Google Scholar 

  6. Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Phys D 43:44

    Article  Google Scholar 

  7. Lamorgese AG, Mauri R (2009) Diffuse-interface modeling of liquid–vapor phase separation in a van der waals fluid. Phys Fluids 21:044107

    Article  Google Scholar 

  8. Onuki A (2007) Dynamic van der waals theory. Phys Rev E 75:036304

    Article  Google Scholar 

  9. Molin D, Mauri R (2007) Enhanced heat transport during phase separation of liquid binary mixtures. Phys Fluids 19:074102

    Article  Google Scholar 

  10. Henderson D, Leonard PJ (1971) One- and two-fluid van der Waals theories of liquid mixtures. II. 6-12 molecules. Proc Natl Acad Sci 68:632

    Article  CAS  Google Scholar 

  11. Brandani V, Prausnitz JM (1982) Two-fluid theory and thermodynamic properties of liquid mixtures. Application to simple mixtures of nonelectrolytes. Proc Natl Acad Sci 79:5729

    Article  CAS  Google Scholar 

  12. Glavatskiy KS, Bedeaux D (2008) Nonequilibrium properties of a two-dimensionally isotropic interface in a two-phase mixture as described by the square gradient model. Phys Rev E 77:061101

    Article  CAS  Google Scholar 

  13. de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, New York

    Google Scholar 

  14. Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1999) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. PTR, Prentice Hall

    Google Scholar 

  15. Sengers JV, Kayser RF, Peters CJ, Jr. White HJ, eds (2000) Equations of state for fluids and fluid mixtures. Elsevier, Amsterdam

    Google Scholar 

  16. Landau LD, Lifshitz EM (1986) Statistical physics. Course of theoretical physics 5, 3rd edn (english). Pergamon Press, Oxford

    Google Scholar 

  17. Curie P (1894) Sur la symérie dans les phénomenes physiques. symérie d’un champ électrique et d’un champ magnétique. J de Phys 3:393–415

    Google Scholar 

  18. Bedeaux D, Vlieger J (2004) Optical properties of surfaces. Imperial College Press, London

    Google Scholar 

  19. Simon JM, Bedeaux D, Kjelstrup S, Xu J, Johannessen E (2006) Interface film resistivities for heat and mass transfer; integral relations verified by non-equilibrium molecular dynamics. J Phys Chem B 110:18528

    Article  CAS  Google Scholar 

  20. Gibbs JW (1993) On the equilibrium of heterogeneous substances. In: The Scientific Papers of J. Williard Gibbs

    Google Scholar 

  21. Bedeaux D (1986) Nonequilibrium thermodynamics and statistical physics of surfaces. Adv Chem Phys 64:47–109

    Article  CAS  Google Scholar 

  22. Bedeaux D, Albano AM, Mazur P (1976) Boundary conditions and non-equilibrium thermodynamics. Phys A 82:438–462

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Glavatskiy .

Appendices

On the Extension of the Gibbs Relation to Non-Equilibrium

For the specific Helmholtz energy the ordinary Gibbs relation in equilibrium was found to be

$$ \delta f(T,v,\xi)=-s({{\mathbf{r}}})\,\delta T+ {\sum\limits_{i=1}^{n-1}{\psi_{i}\,\delta\xi_{i}({{\mathbf{r}}})}}- p({{\mathbf{r}}})\,\delta v({{\mathbf{r}}}) $$
(3.62)

Spatial Gibbs relations in equilibrium was found to be

$$\nabla f({{\mathbf{r}}})={\sum\limits_{i=1}^{n-1}{\psi_{i}\,\nabla\xi_{i}({{\mathbf{r}}})}}-p({{\mathbf{r}}})\,\nabla v({{\mathbf{r}}})+v({{\mathbf{r}}})\,{\frac{{\partial \gamma_{{\alpha \beta }}({\mathbf{r}})}}{{\partial x_{\alpha } }}}$$
(3.63)

One may wonder why to use the Gibbs relations for the specific internal energy, not for the specific Helmholtz energy, to extend them to non-equilibrium analysis. Following the same procedure, as in Sect. 3.3, we can extend the Gibbs relations for the specific Helmholtz energy to non-equilibrium in the following way

$${\frac{\partial f({{\mathbf{r}}}, t)}{\partial t}}=-s({{\mathbf{r}}}, t)\,{\frac{\partial T({{\mathbf{r}}},t)}{\partial t}} +{\sum\limits_{i=1}^{n-1}{\psi_{i}({{\mathbf{r}}},t)\,{\frac{\partial \xi_{i}({{\mathbf{r}}}, t)}{\partial t}}}}-p({{\mathbf{r}}}, t)\,{\frac{\partial v({{\mathbf{r}}}, t)}{\partial t}}$$
(3.64)
$$\nabla f({{\mathbf{r}}}, t)={\sum\limits_{i=1}^{n-1}{\psi_{i}({{\mathbf{r}}}, t)\,\nabla\xi_{i}({{\mathbf{r}}},t)}}-p({{\mathbf{r}}}, t)\,\nabla v({{\mathbf{r}}},t)+v({{\mathbf{r}}}, t)\,{\frac{{\partial \gamma _{{\alpha \beta }}({\mathbf{r}},t)}}{{\partial x_{\alpha} }}}$$
(3.65)

For the ordinary Gibbs relations, like in homogeneous description, there is no preference in the thermodynamic potential. Provided Eq. 3.6, equilibrium ordinary Gibbs relations 3.9 and 3.62 are equivalent. The non-equilibrium relation between these potentials

$$ u({{\mathbf{r}}},\,t)=f({{\mathbf{r}}},\,t)+s({{\mathbf{r}}},\,t) T({{\mathbf{r}}},\,t) $$
(3.66)

makes non-equilibrium ordinary Gibbs relations (3.11) and (3.64) to be equivalent as well.

The situation is different for the spatial Gibbs relations, however. Provided Eq. 3.6, equilibrium spatial Gibbs relations Eqs. 3.10 and 3.63 are equivalent. The non-equilibrium relation Eq. 3.66 between these potentials makes, however, non-equilibrium spatial Gibbs relations (3.12) and (3.65) to be \(not\) equivalent. The reason for that is that the equilibrium spatial Gibbs relation for the specific Helmholtz energy, as given in Eq. 3.63, does not contain the term, proportional to \({\nabla}T,\) since \({\nabla}T=0\) in equilibrium. In non-equilibrium \({\nabla}T({\bf r}, t)\neq0\) and, as one can see from Eqs. 3.12 and 3.66, \(\nabla f({\bf r}, t)\) contains such a term.

We see, that the Gibbs relations for the specific internal energy describe the system more adequately since they do not suffer from the unaccounted effect of possible temperature changes. Because of this reason we should use the Gibbs relations for the specific internal energy, not the specific Helmholtz energy, to extend them to non-equilibrium. Of course, this does not make the internal energy to be somehow preferred thermodynamic potential in non-equilibrium. If one does not disregards terms with \({\nabla}T\) or others which are zero in equilibrium, one will see the fully equivalence between all the thermodynamic potentials, as it should be.

Two-Dimensional Isotropic Components in the 3D Tensorial Quantities

As in Sect. 3.6 we shall use the special notation for the tensorial quantities of different order and different behavior in this section. Any tensorial quantity is denoted as \(Q^{(d\,{\rm{r}})}.\) Here \(d\) indicates the dimensionality of the space, in which the quantity is being considered, and can be either 3 or 2 here. \(\hbox{r}\) indicates the rank of the tensorial quantity, and can be \(\hbox{s}\) for scalar, \(\hbox{v}\) for vectorial or \(\hbox{t}\) for tensorial quantities. For example, \(Q^{(2\,{\rm t})}\) indicates the two-dimensional tensor, i.e. the quantity \(\left(\begin{array}{ll} q_{11} & q_{12}\\q_{21} & q_{22}\end{array}\right),\) where \(q_{ij}\) are numbers, and \(Q^{(3\,{\rm v})}\) indicates the three-dimensional vector, i.e. the quantity \((q_{1}, q_{2}, q_{3}),\) where \(q_{i}\) are numbers. Scalars are the numbers irrespectively of the dimensionality of the space, so they will be denoted simply by \(Q^{({\rm s})}.\)

Some quantities reveal the tensorial behavior of a some rank in \(d\)-dimensional space only under some specified transformations, while in general they do not. In this section we are interested only in rotations around and reflections with respect to some constant vector \(N^{(3\,{\rm v})}\) in three-dimensional space. We will denote quantities which reveal the tensorial behavior of rank \(\hbox{r}\) under these transformations by \(Q^{(d\,{\rm r}_{\,N})}.\)

We show how in presence of the constant vector \(N^{(3\,{\rm v})}\) one can split the tensorial quantity \(Q^{(3\,{\rm r})}\) into a combination of the tensorial quantities \(Q^{(2\,{\rm r}_{\,N})}.\) Without loss of generality we will assume that \(N^{{\rm (3\,v)}}=(1,0,0).\)

From 3D vector \(V^{(3\,{\rm v})}\) one can construct the following quantities, which are linear in \(V^{(3\,{\rm v})}\): one scalar quantity

$$ V^{({\rm s}_{\,N})}\equiv V^{(3\,{\rm v})}\cdot N^{(3\,{\rm v})}= V^{(3\,{\rm v})}_{1} $$

and one vectorial quantity

$$ V^{(3\,{\rm v}_N)}\equiv V^{(3\,{\rm v})}- V^{({\rm s}_{\,N})}N^{(3\,{\rm v})}=\left(0,V^{(3\,{\rm v})}_{2}, V^{(3\,{\rm v})}_{3}\right) $$

which is perpendicular to the \(N^{(3\,{\rm v})}.\) Denoting \(V^{(2\,{\rm v}_{\,N})}\equiv(V^{(3\,{\rm v})}_{2}, V^{(3\,{\rm v})}_{3})\) we can write that \(V^{(3\,{\rm v}_N)}=(0,V^{(2\,{\rm v}_{\,N})}).\) Thus,

$$ V^{(3\,{\rm v})}=V^{({\rm s}_{\,N})}N^{(3\,{\rm v})}+ V^{(3\,{\rm v}_{\,N})}=(V^{({\rm s}_{\,N})},V^{(2\,{\rm v}_{\,N})}) $$
(3.67)

From 3D tensor \(T^{(3\,{\rm t})}\) one can construct the following quantities, which are linear in \(T^{(3\,{\rm t})}\): 2 scalar quantity,

$$ T^{(\hbox{s})}_{0}\equiv\hbox{Tr}\,T^{(3\,{\rm t})}= T^{(3\,{\rm t})}_{11}+T^{(3\,{\rm t})}_{22}+T^{(3\,{\rm t})}_{33} $$

and

$$ T^{({\hbox{s}}_{\,N})}_{1}\equiv N^{(3\,{\rm v})}\cdot T^{(3\,{\rm t})} \cdot N^{(3\,{\rm v})}=T^{(3\,{\rm t})}_{11} $$

two vectorial quantities

$$ T^{(3\,{\hbox{v}}_{\,N})}_{l}\equiv N^{(3\,{\rm v})}\cdot T^{(3\,{\rm t})}- T^{{(\hbox{s}}_{\,N})}_{1} N^{(3\,{\rm v})}=\left(0,T^{(3\,{\rm t})}_{12}, T^{(3\,{\rm t})}_{13}\right) $$

and

$$ T^{(3\,{\hbox{v}}_{\,N})}_{r}\equiv T^{(3\,{\rm t})} \cdot N^{(3\,{\rm v})} - T^{({\rm s}_{\,N})}_{1}N^{(3\,{\rm v})}=\left(0,T^{(3\,{\rm t})}_{21}, T^{(3\,{\rm t})}_{31}\right) $$

(which are equal, if \(T^{(3\,{\rm t})}\) is symmetric); and tensorial quantity

$$ \begin{aligned} T^{(3\,{\hbox{t}}_{\,N})}&\equiv T^{(3\,{\rm t})} - T^{{\rm s}_{\,N}}_{1}N^{(3\,{\rm v})}N^{(3\,{\rm v})}- T^{(3\,{{\rm v}}_{\,N})}_{l}N^{(3\,{\rm v})}- N^{(3\,{\rm v})}T^{(3\,{{\rm {v}\,}_{N}})}_{r}\\ &=\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & T^{(3\,{\rm t})}_{22} & T^{(3\,{\rm t})}_{23} \\ 0 & T^{(3\,{\rm t})}_{32} & T^{(3\,{\rm t})}_{33} \end{array}\right) \end{aligned} $$

Denoting

$$ \begin{aligned} T^{(2\,{\hbox{v}}_{\,N})}_{l}&\equiv\left(T^{(3\,{\rm t})}_{12}, T^{(3\,{\rm t})}_{13}\right)\quad T^{(2\,{\rm t}_{\,N})}\equiv \left(\begin{array}{ll} T^{(3\,{\rm t})}_{22} & T^{(3\,{\rm t})}_{23} \\ T^{(3\,{\rm t})}_{32} & T^{(3\,{\rm t})}_{33} \end{array}\right)\\ T^{(2\,{\rm v}_{\,N})}_{r}&\equiv\left(T^{(3\,{\rm t})}_{21}, T^{(3\,{\rm t})}_{31}\right) \end{aligned} $$

we can write that

$$ \begin{aligned} T^{(3\,{\rm v}_{\,N})}_{l}&=\left(0,T^{(2\,{\rm v}_{\,N})}_{l}\right)\quad T^{(3\,{\rm t}_{\,N})}=\left(\begin{array}{ll} 0 & 0 \\ 0 & T^{(2\,{\rm t}_{\,N})} \end{array}\right)\\ T^{(3\,{\rm v}_{\,N})}_{r}&=\left(0,T^{(2\,{\rm v}_{\,N})}_{r}\right) \end{aligned} $$

Thus Footnote 5

$$ \begin{aligned} T^{(3\,{\rm t})}&=T^{({\rm s}_{\,N})}_{1}N^{(3\,{\rm v})} N^{(3\,{\rm v})}+T^{(3\,{\rm v}_{\,N})}_{l} N^{(3\,{\rm v})}+N^{(3\,{\rm v})}T^{(3\,{\rm v}_{\,N})}_{r} +T^{(3\,{\rm t}_{\,N})}\\ &=\left(\begin{array}{ll} T^{({\rm s}_N)}_{1} & T^{(2\,{\rm v}_{\,N})}_{l} \\ T^{(2\,{\rm v}_{\,N})}_{r} & T^{(2\,{\rm t}_{\,N})}\end{array}\right) \end{aligned} $$
(3.68)

Tensor \(T^{(2\,{\rm t}_{\,N})}\) still contains the scalar part

$$ T^{({\rm s}_{\,N})}_{2}\equiv\hbox{Tr}\,T^{(2\,{\rm t}_{\,N})}= T^{(3\,{\rm t})}_{22}+T^{(3\,{\rm t})}_{33} $$

which obeys the relation

$$ T^{(\hbox{s})}_{0}=T^{({\hbox{s}}_{\,N})}_{1}+T^{({\hbox{s}}_{\,N})}_{2} $$
(3.69)

Two of these three scalar quantities are linearly independent, and one can use any pair. Since we want to reduce all the quantities to the form \(Q^{(2\,{\rm r}_{\,N})}\) we will use \(T^{({\rm s}_{\,N})}_{1}\) and \(T^{({\rm s}_{\,N})}_{2}\) as independent pair. Introducing the traceless tensor

$$ {\mathring{T}}^{(2\,{\rm t}_{\,N})}\equiv T^{(2\,{\rm t}_{\,N})}-{\frac{1}{2}} T^{({\rm s}_{\,N})}_{2}U^{(2\,{\rm t})}=\left(\begin{array}{ll} T^{(3\,{\rm t})}_{22}-{\frac{1}{2}}T^{({\rm s}_{\,N})}_{2} & T^{(3\,{\rm t})}_{23} \\ T^{(3\,{\rm t})}_{32} & T^{(3\,{\rm t})}_{33}-{\frac{1}{2}}T^{({\rm s}_{\,N})}_{2} \end{array}\right) $$

and

$${\mathring{T}}^{(3\,{\hbox{t}}_{\,N})} \equiv T^{(3\,{\hbox{t}}_{\,N})}- {\frac{1}{2}}T^{{({\hbox{s}}}_{\,N})}_{2}U^{(3\,{\hbox{t}}_{\,N})}= \left(\begin{array}{ll} 0 & 0 \\ 0& {\mathring{T}}^{(2\,{\hbox{t}}_{\,N})} \end{array}\right)$$

where

$$U^{(2\,\hbox{t})}\equiv\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)\quad U^{(3\,\hbox{t}_{\,N})}\equiv \left(\begin{array}{ll} 0 & 0 \\ 0& U^{(2\,\hbox{t})} \end{array}\right) $$

we can write a 3D tensor as

$$\begin{aligned} T^{(3\,{\rm t})}&=T^{({\rm s}_{\,N})}_{1}N^{(3\,{\rm v})} N^{(3\,{\rm v})}+{\frac{1}{2}}T^{({\rm s}_{\,N})}_{2} U^{(3\,{\rm t}_{\,N})} +{\mathring{T}}^{(3\,{\rm t}_{\,N})} \\ &\quad+ T^{(3\,{\rm v}_{\,N})}_{l}N^{(3\,{\rm v})} + N^{(3\,{\rm v})}T^{(3\,{\rm v}_{\,N})}_{r}\\ &=\left(\begin{array}{ll} T^{({\rm s}_{\,N})}_{1} & T^{(2\,{\rm v}_{\,N})}_{l} \\ T^{(2\,{\rm v}_{\,N})}_{r} & {\frac{1}{2}} T^{({\rm s}_{\,N})}_{2}U^{(2\,{\rm t})} +{\mathring{T}}^{(2\,{\rm t}_{\,N})} \end{array}\right) \end{aligned} $$
(3.70)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glavatskiy, K. (2011). Non-Equilibrium Continuous Description. In: Multicomponent Interfacial Transport. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15266-5_3

Download citation

Publish with us

Policies and ethics