Skip to main content

Automatic Morphological Categorisation of Carbon Black Nano-aggregates

  • Conference paper
Database and Expert Systems Applications (DEXA 2010)

Abstract

Nano-technology is the study of matter behaviour on atomic and molecular scale (i.e. nano-scale). In particular, carbon black is a nano-material generally used for the reinforcement of rubber compounds. Nevertheless, the exact reason behind its success in this concrete domain remains unknown. Characterisation of rubber nano-aggregates aims to answer this question. The morphology of the nano-aggregate takes an important part in the final result of the compound. Several approaches have been taken to classify them. In this paper we propose the first automatic machine-learning-based nano-aggregate morphology categorisation system. This method extracts several geometric features in order to train machine-learning classifiers, forming a constellation of expert knowledge that enables us to foresee the exact morphology of a nano-aggregate. Furthermore, we compare the obtained results and show that Decision Trees outperform the rest of the counterparts for morphology categorisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roco, M., Bainbridge, W.: Societal implications of nanoscience and nanotechnology. Kluwer Academic Pub., Dordrecht (2001)

    Google Scholar 

  2. Kiparissides, C., Clausen, B., Boehm, L., Wilkins, T., Kellermayer, M., Baraton, M., Hossain, K.: NMP expert advisory group (EAG) position paper on future RTD activities of NMP for the period 2010 – 2015. Technical report

    Google Scholar 

  3. Mather, P., Thomas, K.: Carbon black/high density polyethylene conducting composite materials: Part I Structural modification of a carbon black by gasification in carbon dioxide and the effect on the electrical and mechanical properties of the composite. Journal of materials science 32(2), 401–407 (1997)

    Article  Google Scholar 

  4. Donnet, J., Bansal, R., Wang, M.: Carbon black: science and technology. CRC, Boca Raton (1993)

    Google Scholar 

  5. Soewono, A.: Morphology and microstructure of diesel particulates. Master’s thesis

    Google Scholar 

  6. Amaral, A.: Image analysis in biotechnological processes: applications to wastewater treatment. PhD thesis, Universidadde Do Minho (2003)

    Google Scholar 

  7. Al-Kadi, O.: Tumour Grading and Discrimination based on Class Assignment and Quantitative Texture Analysis Techniques. PhD thesis, University of Sussex (2009)

    Google Scholar 

  8. Fröhlich, J., Niedermeier, W., Luginsland, H.: The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Composites Part A 36(4), 449–460 (2005)

    Article  Google Scholar 

  9. Donnet, J.: Black and white fillers and tire compound. Rubber chemistry and technology 71(3), 323–341 (1998)

    Google Scholar 

  10. De, S., Naskar, K., White, J.: Rubber Technologist’s Handbook, vol. 2. Smithers Rapra (2008)

    Google Scholar 

  11. Herd, C., McDonald, G., Hess, W.: Morphology of carbon-black aggregates: fractal versus euclidean geometry. Rubber chemistry and technology 65(1), 107–129 (1992)

    Google Scholar 

  12. Meakin, P.: Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Physical Review Letters 51(13), 1119–1122 (1983)

    Article  Google Scholar 

  13. Mandelbrot, B.: The fractal geometry of nature. W.H. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  14. Kaye, B.: Fractal description of fineparticle systems. Particle Characterization in Technology: Morphological analysis, 81 (1984)

    Google Scholar 

  15. Mandelbrot, B.: Form, chance, and Dimension. In: Chance and Dimension, pp. 1–234. Freeman, San Francisco (1977)

    Google Scholar 

  16. American Society for Testing and Materials: ASTM D3849-02 - Standard Test Method for Carbon Black - Morphological Characterization of Carbon Black Using Electron Microscopy (2002) (Testing method)

    Google Scholar 

  17. Pajares, G., de la Cruz, J.M.: Visión por Computador. Ra-Ma Publishers (2007)

    Google Scholar 

  18. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11, 285–296 (1975)

    Article  Google Scholar 

  19. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16(3), 321–357 (2002)

    MATH  Google Scholar 

  20. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  21. Cooper, G.F., Herskovits, E.: A bayesian method for constructing bayesian belief networks from databases. In: Proceedings of the 7th conference on Uncertainty in artificial intelligence (1991)

    Google Scholar 

  22. Russell, S.J., Norvig: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  23. Geiger, D., Goldszmidt, M., Provan, G., Langley, P., Smyth, P.: Bayesian network classifiers. In: Machine Learning, pp. 131–163 (1997)

    Google Scholar 

  24. Amari, S., Wu, S.: Improving support vector machine classifiers by modifying kernel functions. Neural Networks 12(6), 783–789 (1999)

    Article  Google Scholar 

  25. Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: Proc. CVPR, vol. 1, p. 4 (2008)

    Google Scholar 

  26. Üstün, B., Melssen, W., Buydens, L.: Visualisation and interpretation of support vector regression models. Analytica chimica acta 595(1-2), 299–309 (2007)

    Article  Google Scholar 

  27. Garner, S.: Weka: The Waikato environment for knowledge analysis. In: Proceedings of the New Zealand Computer Science Research Students Conference, pp. 57–64 (1995)

    Google Scholar 

  28. Quinlan, J.: C4. 5 programs for machine learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  29. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  30. Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine learning methods for predicting fault proneness models. International Journal of Computer Applications in Technology 35(2), 183–193 (2009)

    Article  Google Scholar 

  31. Ungár, T., Gubicza, J., Tichy, G., Pantea, C., Zerda, T.: Size and shape of crystallites and internal stresses in carbon blacks. Composites Part A 36(4), 431–436 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López-de-Uralde, J. et al. (2010). Automatic Morphological Categorisation of Carbon Black Nano-aggregates. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds) Database and Expert Systems Applications. DEXA 2010. Lecture Notes in Computer Science, vol 6262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15251-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15251-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15250-4

  • Online ISBN: 978-3-642-15251-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics