Skip to main content

Partial Weighted MaxSAT for Optimal Planning

  • Conference paper
PRICAI 2010: Trends in Artificial Intelligence (PRICAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6230))

Included in the following conference series:

Abstract

We consider the problem of computing optimal plans for propositional planning problems with action costs. In the spirit of leveraging advances in general-purpose automated reasoning for that setting, we develop an approach that operates by solving a sequence of partial weighted MaxSAT problems, each of which corresponds to a step-bounded variant of the problem at hand. Our approach is the first SAT-based system in which a proof of cost-optimality is obtained using a MaxSAT procedure. It is also the first system of this kind to incorporate an admissible planning heuristic. We perform a detailed empirical evaluation of our work using benchmarks from a number of International Planning Competitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffmann, J., Gomes, C.P., Selman, B., Kautz, H.A.: Sat encodings of state-space reachability problems in numeric domains. In: Proc. IJCAI (2007)

    Google Scholar 

  2. Kautz, H.A.: Deconstructing planning as satisfiability. In: Proc. AAAI (2006)

    Google Scholar 

  3. Russell, R., Holden, S.: Handling goal utility dependencies in a satisfiability framework. In: Proc. ICAPS (2010)

    Google Scholar 

  4. Giunchiglia, E., Maratea, M.: Planning as satisfiability with preferences. In: Proc. ICAPS (2007)

    Google Scholar 

  5. Robinson, N., Gretton, C., Pham, D.N., Sattar, A.: Sat-based parallel planning using a split representation of actions. In: Proc. ICAPS (2009)

    Google Scholar 

  6. Streeter, M., Smith, S.: Using decision procedures efficiently for optimization. In: Proc. ICAPS (2007)

    Google Scholar 

  7. Rintanen, J.: Evaluation strategies for planning as satisfiability. In: Proc. ECAI (2004)

    Google Scholar 

  8. Kautz, H., Selman, B.: Unifying SAT-based and graph-based planning. In: Proc. IJCAI (1999)

    Google Scholar 

  9. Keyder, E., Geffner, H.: Soft goals can be compiled away. Journal of Artificial Intelligence Research 36(1) (2009)

    Google Scholar 

  10. Bylander, T.: The computational complexity of propositional strips planning. Artificial Intelligence 69, 165–204 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Argelic, J., Li, C.M., Manya, F., Planes, J.: The first and second max-sat evaluations. Journal on Satisfiability, Boolean Modeling and Computation 4, 251–278 (2008)

    Google Scholar 

  12. Fu, Z., Malik, S.: On solving the partial max-sat problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence (90), 281–300 (1997)

    Article  MATH  Google Scholar 

  14. Rintanen, J.: Planning graphs and propositional clause learning. In: Proc. KR (2008)

    Google Scholar 

  15. Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. In: Proc. KR (1996)

    Google Scholar 

  16. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: SAT solver description. Technical Report D–153, Automated Reasoning Group, Computer Science Department, UCLA (2007)

    Google Scholar 

  17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proc. DAC (2001)

    Google Scholar 

  18. Marques-Silva, J.P., Sakallah, K.A.: Grasp - a new search algorithm for satisfiability. In: Proc. ICCAD (1996)

    Google Scholar 

  19. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proc. IJCAI (2007)

    Google Scholar 

  20. Robinson, N., Gretton, C., Pham, D.N.: Co-plan: Combining SAT-based planning with forward-search. In: Proc. IPC-6 (2008)

    Google Scholar 

  21. Büttner, M., Rintanen, J.: Satisfiability planning with constraints on the number of actions. In: Proc. ICAPS (2005)

    Google Scholar 

  22. Wolfman, S.A., Weld, D.S.: The LPSAT engine and its application to resource planning. In: Proc. IJCAI (1999)

    Google Scholar 

  23. Shin, J.A., Davis, E.: Processes and continuous change in a sat-based planner. Artif. Intell. 166(1-2), 194–253 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: What’s the difference anyway? In: Proc. ICAPS (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robinson, N., Gretton, C., Pham, D.N., Sattar, A. (2010). Partial Weighted MaxSAT for Optimal Planning. In: Zhang, BT., Orgun, M.A. (eds) PRICAI 2010: Trends in Artificial Intelligence. PRICAI 2010. Lecture Notes in Computer Science(), vol 6230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15246-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15246-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15245-0

  • Online ISBN: 978-3-642-15246-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics