Skip to main content

A Spectral Projected Gradient Optimization for Binary Tomography

  • Chapter
Computational Intelligence in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 313))

Abstract

In this paper we present a deterministic binary tomography reconstruction method based on the Spectral Projected Gradient (SPG) optimization approach. We consider a reconstruction problem with added smoothness convex prior. Using a convex-concave regularization we reformulate this problem to a non-integer and box constrained optimization problem which is suitable to solve by SPG method. The flexibility of the proposed method allows application of other reconstruction priors too. Performance of the proposed method is evaluated by experiments on the limited set of artificial data and also by comparing the obtained results with the ones provided by the often used non-deterministic Simulated Annealing method. The comparison shows its competence regarding to the quality of reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balázs, P.: Discrete Tomography Reconstruction of Binary Images with Disjoint Components using Shape Information. Int. J. of Shape Modeling 14, 189–207 (2008)

    Article  MATH  Google Scholar 

  2. Balázs, P., Gara, M.: An Evolutionary Approach for Object-based Image Reconstruction using Learnt Priors. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 520–529. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Barzilai, J., Borwein, J.M.: Two Point Step Size Gradient Methods. IMA Journal of Numerical Analysis 8, 141–148 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertsekas, D.P.: On the Goldstein-Levitin-Polyak Gradient Projection Method. IEEE Transactions on Automatic Control 21, 174–184 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  5. Birgin, E., Martínez, J.: A Box-Constrained Optimization Algorithm with Negative Curvature Directions and Spectral Projected Gradients. Computing 15, 49–60 (2001)

    Google Scholar 

  6. Birgin, E., Martínez, J., Raydan, M.: Nonmonotone Spectral Projected Gradient Methods on Convex Sets. SIAM J. on Optimization 10, 1196–1211 (2000)

    Article  MATH  Google Scholar 

  7. Birgin, E., Martínez, J., Raydan, M.: Algorithm: 813: Spg – Software for Convex-Constrained Optimization. ACM Transactions on Mathematical Software 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  8. Birgin, E., Martínez, J., Raydan, M.: Inexact Spectral Projected Gradient Methods on Convex Sets. IMA Journal of Numerical Analysis 23, 539–559 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Birgin, E., Martínez, J., Raydan, M.: Spectral Projected Gradient Methods. Encyclopedia of Optimization, 3652–3659 (2009)

    Google Scholar 

  10. Giannessi, F., Niccolucci, F.: Connections between Nonlinear and Integer Programming Problems. Symposia Mathematica, 161–176 (1976)

    Google Scholar 

  11. Grippo, L., Lampariello, F., Lucidi, S.: A Nonmonotone Line Search Technique for Newton’s Method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Basel (1999)

    MATH  Google Scholar 

  13. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Basel (2006)

    Google Scholar 

  14. Horst, R., Tuy, H.: Global Optimization: Determinitic Approaches, 3rd edn. Springer, Berlin (1996)

    Google Scholar 

  15. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220(4598), 671–681 (1983)

    Article  MathSciNet  Google Scholar 

  16. Lukić, T., Lindblad, J., Sladoje, N.: Image Regularization based on Spectral Conjugate Gradient Optimization (submited for publication)

    Google Scholar 

  17. Lukić, T., Lukity, A.: Binary Tomography Reconstruction Algorithm based on the Spectral Projected Gradient Optimization. In: Proc. of the 10th International Symposium of Hungarian Researches on Computational Intelligence and Informatics, Budapest, pp. 253–263 (2009)

    Google Scholar 

  18. Lukić, T., Sladoje, N., Lindblad, J.: Deterministic Defuzzification Based on Spectral Projected Gradient Optimization. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 476–485. Springer, Heidelberg (2008)

    Google Scholar 

  19. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of State Calculations by Fast Computing Machines. Journal of Chemical Physics 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  20. Pham Dinh, T., Elbeirnoussi, S.: Duality in d.c (difference of convex functions) Optimization, Subgradient Methods. Trends in Math. Opt. 84, 276–294 (1988)

    Google Scholar 

  21. Rudin, L., Osher, S., Fatemi, E.: Nonlinear Total Variation-based Noise Removal Algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  22. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete Tomography by Convex-Concave Regularization and D. C. Programming. Discrete Appl. Math. 151, 229–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schüle, T., Weber, S., Schnörr, C.: Adaptive Reconstruction of Discrete-valued Objects from Few Projections. In: Proceedings of the Workshop on Discrete Tomography and its Applications. Electronic Notes in Discrete Mathematics, vol. 20, pp. 365–384. Elsevier, Amsterdam (2005)

    Google Scholar 

  24. Weber, S., Nagy, A., Schüle, T., Schnörr, C., Kuba, A.: A Benchmark Evaluation of Large-Scale Optimization Approaches to Binary Tomography. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 146–156. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Weber, S., Schnörr, C., Schüle, T., Hornegger, J.: Binary Tomography by Iterating Linear Programs from Noisy Projections. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 38–51. Springer, Heidelberg (2004)

    Google Scholar 

  26. Weber, S., Schüle, T., Kuba, A., Schnörr, C.: Binary Tomography with Deblurring. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 375–388. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Weber, S., Schüle, T., Schnörr, C.: Prior Learning and Convex-Concave Regularization of Binary Tomography. In: Proceedings of the Workshop on Discrete Tomography and its Applications. Electronic Notes in Discrete Mathematics, vol. 20, pp. 313–327. Elsevier, Amsterdam (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lukić, T., Lukity, A. (2010). A Spectral Projected Gradient Optimization for Binary Tomography. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds) Computational Intelligence in Engineering. Studies in Computational Intelligence, vol 313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15220-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15220-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15219-1

  • Online ISBN: 978-3-642-15220-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics