Skip to main content

A Resolution Mechanism for Prenex Gödel Logic

  • Conference paper
Computer Science Logic (CSL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6247))

Included in the following conference series:

Abstract

First order Gödel logic G\(^\Delta_\infty\), enriched with the projection operator Δ—in contrast to other important t-norm based fuzzy logics, like Łukasiewicz and Product logic—is well known to be recursively axiomatizable. However, unlike in classical logic, testing (1-)unsatisfiability, i.e., checking whether a formula has no interpretation that assigns the designated truth value 1 to it, cannot be straightforwardly reduced to testing validity. We investigate the prenex fragment of G\(^\Delta_\infty\) and show that, although standard Skolemization does not preserve 1-satisfiability, a specific Skolem form for satisfiability can be computed nevertheless. In a further step an efficient translation to a particular structural clause form is introduced. Finally, an adaption of a chaining calculus is shown to provide a basis for efficient, resolution style theorem proving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In: Proceedings Gödel 1996. Kurt Gödel’s Legacy. LNL, vol. 6, pp. 23–33. Springer, Heidelberg (1996)

    Google Scholar 

  2. Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Annals of Pure and Applied Logic 147(1-2), 23–47 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baaz, M., Veith, H.: Quantifier Elimination in Fuzzy Logic. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) CSL 1998. LNCS, vol. 1584, pp. 399–414. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Baaz, M., Veith, H.: Interpolation in fuzzy logic. Arch. Math. Logic 38, 461–489 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s Theorem for Prenex Gödel Logic and its Consequences for Theorem Proving. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 201–216. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Bachmair, L., Ganzinger, H.: Ordered Chaining for Total Orderings. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 435–450. Springer, Heidelberg (1994)

    Google Scholar 

  7. Bachmair, L., Ganzinger, H.: Ordered Chaining Calculi for First-Order Theories of Transitive Relations. J. ACM 45(6), 1007–1049 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dummett, M.: A propositional calculus with denumerable matrix. J. of Symbolic Logic 24, 97–106 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fermüller, C.G., Leitsch, A., Tammet, T., Zamov, N.: Resolution Methods for the Decision Problem. LNCS, vol. 679. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  10. Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1791–1849. Elsevier/MIT Press (2001)

    Google Scholar 

  11. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anz. Akad. Wiss. Wien 69, 65–66 (1932)

    Google Scholar 

  12. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  13. Hájek, P.: Arithmetical complexity of fuzzy predicate logics – a survey. Soft Computing 9(12), 935–941 (2005)

    Article  MATH  Google Scholar 

  14. Hájek, P.: Arithmetical complexity of fuzzy predicate logics – a survey II. Annals of Pure and Applied Logic 161(2), 212–219 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hájek, P.: Monadic fuzzy predicate logics. Studia Logica 71(2), 165–175 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ragaz, M.: Die Unentscheidbarkeit der einstelligen unendlichwertigen Prädikatenlogik. Arch. Math. Logik 23, 129–139 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ragaz, M.: Arithmetische Klassifikation von Formelmengen der unendlichwertigen Logik. Dissertation ETH Zürich Nr. 6822 (1981)

    Google Scholar 

  18. Takeuti, G., Titani, T.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. of Symbolic Logic 49, 851–866 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baaz, M., Fermüller, C.G. (2010). A Resolution Mechanism for Prenex Gödel Logic. In: Dawar, A., Veith, H. (eds) Computer Science Logic. CSL 2010. Lecture Notes in Computer Science, vol 6247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15205-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15205-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15204-7

  • Online ISBN: 978-3-642-15205-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics