Skip to main content

Multi-objective Evolutionary Algorithms to Investigate Neurocomputational Issues: The Case Study of Basal Ganglia Models

  • Conference paper
From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

Abstract

The basal ganglia (BG) are a set of subcortical nuclei involved in action selection processes. We explore here the automatic parameterization of two models of the basal ganglia (the GPR and the CBG) using multi-objective evolutionary algorithms. We define two objective functions characterizing the supposed winner-takes-all functionality of the BG and obtain a set of solutions lying on the Pareto front for each model. We show that the CBG architecture leads to solutions dominating the GPR ones, this highlights the usefulness of the CBG additional connections with regards to the GPR. We then identify the most satisfying solutions on the fronts in terms of both functionality and plausibility. We finally define critical and indifferent parameters by analyzing their variations and values on the fronts, helping us to understand the dynamics governing the selection process in the BG models.

This research was funded by the ANR, project EvoNeuro ANR-09-EMER-005-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doncieux, S.: Evolutionary algorithms as exploration and analysis helper tools, application to a flapping wings aircraft. In: IROS Workshop Exploring New Horizons in Evolutionary Design of Robots, Saint Louis, USA, pp. 19–25 (2009)

    Google Scholar 

  2. Mink, J.: The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology 50(4), 381–425 (1996)

    Article  Google Scholar 

  3. Tepper, J., Bolam, J.: Functional diversity and specificity of neostriatal interneurons. Current opinion in neurobiology 14(6), 685–692 (2004)

    Article  Google Scholar 

  4. Gerfen, C., Engber, T., Mahan, L., Susel, Z., Chase, T., Monsma Jr., F., Sibley, D.: D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986), 1429 (1990)

    Article  Google Scholar 

  5. Redgrave, P., Prescott, T., Gurney, K.: The basal ganglia: a vertebrate solution to the selection problem? Neuroscience-Oxford 89, 1009–1024 (1999)

    Article  Google Scholar 

  6. Alexander, G., DeLong, M., Strick, P.: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual review of neuroscience 9(1), 357–381 (1986)

    Article  Google Scholar 

  7. Chevalier, G., Deniau, J.: Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci. 13(7), 277–280 (1990)

    Article  Google Scholar 

  8. Cohen, M., Frank, M.: Neurocomputational models of basal ganglia function in learning, memory and choice. Behavioural Brain Research 199(1), 141–156 (2009)

    Article  Google Scholar 

  9. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  10. Wang, Y., Li, S., Chen, Q., Hu, W.: Biology Inspired Robot Behavior Selection Mechanism: Using Genetic Algorithm. In: Li, K., Fei, M., Irwin, G.W., Ma, S. (eds.) LSMS 2007. LNCS, vol. 4688, pp. 777–786. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Gurney, K., Prescott, T., Redgrave, P.: A computational model of action selection in the basal ganglia. I. A New Functional Anatomy. Biological Cybernetics 84(6), 401–410 (2001)

    MATH  Google Scholar 

  12. Girard, B., Tabareau, N., Pham, Q., Berthoz, A., Slotine, J.: Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection. Neural Networks 21(4), 628–641 (2008)

    Article  Google Scholar 

  13. Tepper, J., Abercrombie, E., Bolam, J.: Basal ganglia macrocircuits. Progress in Brain Research 160, 3 (2007)

    Article  Google Scholar 

  14. Turner, R., Anderson, M.: Pallidal discharge related to the kinematics of reaching movements in two dimensions. Journal of neurophysiology 77(3), 1051 (1997)

    Google Scholar 

  15. Ballion, B., Mallet, N., Bezard, E., Lanciego, J., Gonon, F.: Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism. European Journal of Neuroscience 27(9), 2313–2321 (2008)

    Article  Google Scholar 

  16. Shink, E., Bevan, M., Bolam, J., Smith, Y.: The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73(2), 335–357 (1996)

    Article  Google Scholar 

  17. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., Fast, A., Algorithm, E.: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2) (2002)

    Google Scholar 

  18. Mouret, J.B., Doncieux, S.: Sferesv2: Evolvin’ in the multi-core world. In: IEEE Congress on Evolutionary Computation, CEC 2010 (to appear 2010)

    Google Scholar 

  19. Albin, R., Young, A., Penney, J.: The functional anatomy of basal ganglia disorders. Trends in Neurosciences 12(10), 366–375 (1989)

    Article  Google Scholar 

  20. Sato, F., Lavallee, P., Levesque, M., Parent, A.: Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. Journal of Comparative Neurology 417(1), 17–31 (2000)

    Article  Google Scholar 

  21. Nambu, A.: Seven problems on the basal ganglia. Current Opinion in Neurobiology 18(6), 595–604 (2008)

    Article  MathSciNet  Google Scholar 

  22. Girard, B., Cuzin, V., Guillot, A., Gurney, K.N., Prescott, T.J.: A basal ganglia inspired model of action selection evaluated in a robotic survival task. Journal of Integrative Neuroscience 2(2), 179–200 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liènard, J., Guillot, A., Girard, B. (2010). Multi-objective Evolutionary Algorithms to Investigate Neurocomputational Issues: The Case Study of Basal Ganglia Models. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics