Skip to main content

Simulating Human Table Tennis with a Biomimetic Robot Setup

  • Conference paper
From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

Abstract

Playing table tennis is a difficult motor task which requires fast movements, accurate control and adaptation to task parameters. Although human beings see and move slower than most robot systems they outperform all table tennis robots significantly. In this paper we study human table tennis and present a robot system that mimics human striking behavior. Therefore we model the human movements involved in hitting a table tennis ball using discrete movement stages and the virtual hitting point hypothesis. The resulting model is implemented on an anthropomorphic robot arm with 7 degrees of freedom using robotics methods. We verify the functionality of the model both in a physical realistic simulation of an anthropomorphic robot arm and on a real Barrett WAMTM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta, L., Rodrigo, J., Mendez, J., Marchial, G., Sigut, M.: Ping-pong player prototype. Robotics and Automation Magazine 10, 44–52 (2003)

    Article  Google Scholar 

  2. Andersson, R.L.: A robot ping-pong player: experiment in real-time intelligent control. MIT Press, Cambridge (1988)

    Google Scholar 

  3. Billingsley, J.: Robot ping pong. Practical Computing (1983)

    Google Scholar 

  4. Bootsma, R., van Wieringen, P.: Visual control of an attacking forehand drive in table tennis. In: Complex Movement Behaviour: The Motor-Action Controversy, pp. 189–199. North-Holland, Amsterdam (1988)

    Chapter  Google Scholar 

  5. Bootsma, R., van Wieringen, P.: Timing an attacking forehand drive in table tennis. Journal of Experimental Psychology: Human Perception and Performance 16, 21–29 (1990)

    Article  Google Scholar 

  6. Cruse, H., Brüwer, M., Brockfeld, P., Dress, A.: On the cost functions for the control of the human arm movement. Biological Cybernetics 62, 519–528 (1990)

    Article  Google Scholar 

  7. Dennis, J., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  8. Fässler, H., Beyer, H.A., Wen, J.T.: A robot ping pong player: optimized mechanics, high performance 3d vision, and intelligent sensor control. Robotersysteme 6, 161–170 (1990)

    Google Scholar 

  9. Hartley, J.: Toshiba porgress towards sensory control in real time. The Industrial Robot 14-1, 50–52 (1987)

    Google Scholar 

  10. Hashimoto, H., Ozaki, F., Asano, K., Osuka, K.: Development of a ping pong robot system using 7 degrees of freedom direct drive. In: Industrial Applications of Robotics and Machine Vision (IECON), pp. 608–615 (1987)

    Google Scholar 

  11. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning motor primitives. In: Advances in Neural Information Processing Systems 16 (NIPS), vol. 15, pp. 1547–1554. MIT Press, Cambridge (2003)

    Google Scholar 

  12. Knight, J., Lowery, D.: Pingpong-playing robot controlled by a microcomputer. Microprocessors and Microsystems 10(6), 332–335 (1986)

    Article  Google Scholar 

  13. Lee, D., Young, D.: Visual timing of interceptive action, pp. 1–30. Martinus Nijhoff, Dordrecht (1985)

    Google Scholar 

  14. Matsushima, M., Hashimoto, T., Takeuchi, M., Miyazaki, F.: A learning approach to robotic table tennis. IEEE Trans. on Robotics 21, 767–771 (2005)

    Article  Google Scholar 

  15. Miyazaki, F., Matsushima, M., Takeuchi, M.: Learning to dynamically manipulate: A table tennis robot controls a ball and rallies with a human being. In: Advances in Robot Control, pp. 3137–3141. Springer, Heidelberg (2005)

    Google Scholar 

  16. Ramanantsoa, M., Durey, A.: Towards a stroke construction model. International Journal of Table Tennis Science 2, 97–114 (1994)

    Google Scholar 

  17. Schaal, S.: The SL simulation and real-time control software package. Technical report, University of Southern California (2009)

    Google Scholar 

  18. Schmidt, R., Wrisberg, C.: Motor Learning and Performance, 2nd edn. Human Kinetics (2000)

    Google Scholar 

  19. Todorov, E.: Optimality principles in sensorimotor control. Nature Neuroscience 7, 907–915 (2004)

    Article  Google Scholar 

  20. Tyldesley, D., Whiting, H.: Operational timing. Journal of Human Movement Studies 1, 172–177 (1975)

    Google Scholar 

  21. Wolpert, D., Miall, C., Kawato, M.: Internal models in the cerebellum. Trends in Cognitive Science 2, 338–347 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mülling, K., Kober, J., Peters, J. (2010). Simulating Human Table Tennis with a Biomimetic Robot Setup. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics