Skip to main content

Phenomenological Coefficients of Water

  • Chapter
  • First Online:
Physics of Lakes

Abstract

This chapter is based on the work done by Hutter and Trösch [35] and extensions of it. We shall list the phenomenological coefficients which describe water as a heat-conducting viscous fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We shall use ‘ppt’ as the standard symbol for ‘parts per thousand’. So \(1\,\mathrm{ppt} =0.001\).

  2. 2.

    In all subsequent formulae it is understood that the temperature is given in degree Celsius.

  3. 3.

    1 millipoise equals \(10^{-3}\) poise. \(1\, [\mathrm{poise}] = 0.1\, [\mathrm{kg}\,\mathrm{m}^{-1}\,\mathrm{s}^{-1}]\).

  4. 4.

    Formula (10.31) shows that the orientation distribution of the ellipsoids is statistically homogeneous, as the bulk viscosity is isotropic.

  5. 5.

    The heat conductivity and thermal diffusivity are defined by the equations:

    $$\rho c_p\frac{\mathrm{d}T}{\mathrm{d}t}=\kappa\nabla ^2T+\cdots$$

    and

    $$\frac{\mathrm{d}T}{\mathrm{d}t}=\chi\nabla ^2T+\cdots ,$$

    respectively. Note that the transformation \(\chi=\kappa/(\rho c_\mathrm{p})\) only conforms with these equations for constant κ and c p.

References

  1. ASME-Steam-Tables.: Thermodynamic and Transport Properties of Steam. ASME, New York, NY (1967)

    Google Scholar 

  2. Assur, A.: Composition of Sea Ice and Its Tensile Strength. National Academy of Sciences, National Research Council, Washington, DC vol. 598 (1958)

    Google Scholar 

  3. Barrett, T. and Nettleton, H.R.: Thermal conductivity of liquids and solids. In: Vol. V of International Critical Tables of Numerical Data, Physics, Chemistry and Technology, (Ed. E.W. Washburn), McGraw-Hill Book Co. Inc., New York, pp. 218–233 (1929)

    Google Scholar 

  4. Batchelor, G.K.: Slender body theory for particles of arbitrary cross section in Stokes-flow. J. Fluid Mech. 44, 419 (1970)

    Article  Google Scholar 

  5. Batchelor, G.K.: The stress system in a suspension of forced particles. J. Fluid Mech. 41, 545 (1970)

    Article  Google Scholar 

  6. Batchelor, G.K.: Sedimentation in a dilute suspension of spheres. J. Fluid Mech. 52, 245 (1972)

    Article  Google Scholar 

  7. Batchelor, G.K.: Transport properties of two-phase materials with random structure. Annu. Rev. Fluid Mech. 6, 227 (1974)

    Article  Google Scholar 

  8. Batchelor, G.K. and Green, J.T.: The hydrodynamic interaction of two small freely moving spheres in a linear flow field. J. Fluid Mech. 56, 375 (1972)

    Article  Google Scholar 

  9. Batchelor, G.K. and Green, J.T.: The determination of the bulk stress in a suspension of spheres to order c 2. J. Fluid Mech. 56, 401 (1972)

    Article  Google Scholar 

  10. Bingham, E.C. and Jackson, R.F. Standard Substances for the calibration of viscometers. Bull. US Bur. Stand. 14(298), 59 (1917)

    Google Scholar 

  11. Bowman, H.A. and Schoonover, R.M.: Procedure for high precision density determinations by hydrostatic weighing. J. Res. Natl. Bur. Stand. 71c(3), 179 (1967)

    Google Scholar 

  12. Bradshaw A. and Schleicher K.E.: Direct measurement of thermal expansion of sea water under pressure. Deep Sea Res. 17(4), 691–706 (1970)

    Google Scholar 

  13. Bromley, L.A., Desaussure, V.A., Clipp, J.C. and Wright, J.S.: Heat capacities of sea water solutions. J. Chem. Eng. Data 12(2), 202–206 (1967)

    Article  Google Scholar 

  14. Bromley L.A., Diamond A.E., Salami E. and Wilkins D.C.: Heat capacities and enthalpies of sea salt solutions to 200 \(^{\circ}\)C. J. Chem. Eng. Data 15(2), 246–253 (1970)

    Article  Google Scholar 

  15. Bührer, H. and Ambühl, H.: Die Einleitung von gereinigtem Abwasser in Seen. Interner Bericht der Eidg. Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz. Dübendorf, Switzerland (1975)

    Google Scholar 

  16. Camp, T.R.: Water and its Impurities. Reinhold, New York, NY (1963)

    Google Scholar 

  17. Castelli, V.J., Stanley, E.M. and Fischer, E.C.: The thermal conductivity of seawater as a function of pressure and temperature. Deep Sea Res. 21(4), 311–319 (1974)

    Google Scholar 

  18. Chapman, S. and Cowling, T.G.: Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1939)

    Google Scholar 

  19. Chen, C.T. and Millero, F.J.: Precise thermodynamic properties for natural waters covering only the limnological range. Limnol. Oceanogr. 31, 657–662 (1986)

    Article  Google Scholar 

  20. Cox, R.A. and Smith, N.D.: The specific heat of sea water. Proc. R. Soc. Lond. 252A, 51–62 (1959)

    Google Scholar 

  21. Defant, A.: Physical Oceanography. Vol. I, Pergamon, New York, NY (1961)

    Google Scholar 

  22. Dorsey, N.E.: Properties of Ordinary Water Substance. Reinhold, New York, NY (1940)

    Google Scholar 

  23. Einstein, A.: Eine neue Bestimmung der Moleküldimensionen. Ann. d. Phys. 29, 298 (1906)

    Google Scholar 

  24. Einstein, A.: Berichtigung zu meiner Arbeit Eine neue Bestimmung der Moleküldimensionen. Ann. d. Phys. 34, 591 (1911)

    Article  Google Scholar 

  25. Ekman, V.W.: Die Zusammendrückbarkeit des Meerwassers. Publ. Circonst. Cons. Perm. Inst. Explor. Mer. 43, 1 (1908)

    Google Scholar 

  26. Ekman, V.W.: Der adiabatische Temperaturgradient im Meere. Ann. d. Hydrogr. u. Mar. Meteor. 42(1), 340–44 (1914)

    Google Scholar 

  27. Emerson, W.H. and Jamieson, D.T.: Some physical properties of sea water in various concentrations. Desalination 3(2), 213–224 (1967)

    Article  Google Scholar 

  28. Fabuss, B.M.: Thermophysical Properties of Saline Water System Research and Development Progress. U.S. Department of the Interior, Office of Saline Water, Report No 189, May (1966)

    Google Scholar 

  29. Fabuss, B.M. and Corosi, A.: Office Saline Water Research, Development Progress Report No 384 (1968)

    Google Scholar 

  30. Fabuss, B.M. and Corosi, A.: Viscosities of aqueous solutions of several electrolytes present in sea water. J. Chem. Eng. Data 14, 192 (1969)

    Article  Google Scholar 

  31. Fofonoff, N.P.: Physical properties of sea water. In: The Sea, Physical Oceanography. Vol. 1 (ed. Hill, M. N., London: Interscience, pp. 3–30 (1962)

    Google Scholar 

  32. Hall, L.: The origin of excess ultrasonic absorption in water. Phys. Rev. 73, 775 (1948)

    Article  Google Scholar 

  33. Handbook of Chemistry and Physics (44th Edition) ed. by C.D. Hodgman, Chemical Rubber Publishing Company, Cleveland, OH (1962)

    Google Scholar 

  34. Henderson-Sellers, B.: Engineering Limnology. Pitman, Boston, MA, 1–265, 356 p. (1984)

    Google Scholar 

  35. Hutter, K. and Trösch, J.: Über die hydrodynamischen und thermodynamischen Grundlagen der Seezirkulation. Mitteilung Nr 20 der Versuchsanstalt für Wasserbau, Hydroligie und Glaziologie an der ETHZ (ed. Vischer, D.), Zürich, 164 p. (1975)

    Google Scholar 

  36. Imboden, D.M. and Wüest, A.: Mixing mechanisms in lakes. In: Physics and Chemistry of Lakes. (eds. Lerman, A., Imboden, D.M. and Gat, J.R.), Springer, Berlin, 83–138 (1995)

    Google Scholar 

  37. Isdale, J.D. and Morris, R.: Physical properties of sea water solutions. Desalination 10, 329–338 (1972)

    Article  Google Scholar 

  38. Isdale, J.D., Spence, C.M. and Thudhope, J.S.: Physical properties of sea water solutions. Desalination 10, 319–328 (1972)

    Article  Google Scholar 

  39. Jäger, W. and Steinwehr, H.: Thermal Capacity of Water between 5° and 50°. Sitzungsber. Preuss. Akad. Wiss. Berlin, 424–432 (1915)

    Google Scholar 

  40. Jeffrey, D.J.: Group expansions for the bulk properties of a statistically homogeneous random suspension. Proc. R. Soc. Lond. 338A, 503 (1974)

    Google Scholar 

  41. Jeffrey, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond., 102A, 161 (1922)

    Google Scholar 

  42. Kearsley, E.A.: An analysis of an absolute torsional pendulum viscometer. Trans. Soc. Rheol. 3, 69 (1959)

    Article  Google Scholar 

  43. Knudsen, M.: Hydrographical Tables. Gad. Copenhagen and Williams Margate, London, 1–63 (1901)

    Google Scholar 

  44. Krümmel, O.: Handbuch der Ozeanographie. Bd. 1, Engelhorn, Stuttgart (1907)

    Google Scholar 

  45. Kuwahara, S.: The velocity of sound in sea water and calculation of the velocity for use in sonic sounding. Jpn. J. Astron. Geophys., 16(1), 1 (1938)

    Google Scholar 

  46. Lin, C.H., Perry, J.H. and Schowalter, W.R.: Simple shear flow round a rigid sphere: Inertial effects and suspension rheology. J. Fluid Mech. 44, 1 (1970)

    Article  Google Scholar 

  47. Marvin, R.S.: The accuracy of measurements of viscosity of liquids. J. Res. Natl. Bur. Stand. 75A(6), 535 (1971)

    Article  Google Scholar 

  48. Maxwell, J.C.: Electricity and Magnetism. (1st Edition), Clarendon Press, Oxford, 365 p. (1873)

    Google Scholar 

  49. Millero F.J. and Kubinski T.: Speed of sound in seawater as a function of of temperature and salinity at 1 atm. J. Acoust. Soc. Am. 57(2), 312–319 (1961)

    Article  Google Scholar 

  50. Millero, F.J., Perron, G. and Desnoyers, J.E.: Heat capacity of seawater solutions. J. Geophys. Res. 78(21), 4499–4507 (1973)

    Article  Google Scholar 

  51. Miyake, Y. and Koizumi, M.: The measurement of the viscosity coefficient of sea water. J. Mar. Res. 7(2), 63 (1948)

    Google Scholar 

  52. Montgomery, R.B.: Oceanographic Data. American Institute of Physics Handbook. Sec. 2, Mechanics. McGraw Hill, New York, NY, 115–124 (1957)

    Google Scholar 

  53. Newton, M. and Kennedy, G.: An experimental study of the P-V-T-S relatioins in sea water. J. Mar. Res. 23, 88 (1965)

    Google Scholar 

  54. Penn, R.W. and Kearsley, E.A.: An absolute determination of viscosity using channel flow. J. Res. Natl. Bur. Stand. 75(6), 553 (1971)

    Google Scholar 

  55. Poiseuille, J.: Recherches experimentales sur le movement des liquids dans les tubes de très petits diamters. Compt. Rend. 11, 961 (1840), 12, 1041 (1841)

    Google Scholar 

  56. Ponizovsky, A.M., Meleshko, E.P. and Globina, N.I.: Viscosity and specific heat capacity of sea water and natural solutions. Proc. Crimea Branch Rus. Acad. Sci. 4(1), 75–80 (1953) (in Russian)

    Google Scholar 

  57. Popov, N.I., Fedorov, K.N. and Orlov, V.M.: Marine Water. Nauka, Moscow, 328 p. (1979)

    Google Scholar 

  58. Riedel, L.: Die Wärmeleitfähigkeit von wässrigen Lösungen starker Elektrolyte. Chem. Ing. Technik 23(3), 59–64 (1951)

    Article  Google Scholar 

  59. Shimaraev M.N., Verbolov V.I., Granin N.G. and Sherstyankin P.P.: Physical Limnology of Lake Baikal: A Review. (Eds. Shimaraev, M.N., Okuda, S.) Baikal International Center for Ecological Research Irkutsk-Okayama. 89 p. (1994)

    Google Scholar 

  60. Stein, W.A.: Gleichungen für die dynamische Viskosität und Wärmeleitfähigkeit von reinem fluidem Wasser. Wärme- und Stoffübertragung 2, 210 (1969)

    Article  Google Scholar 

  61. Stein, W.A.: Das erweiterte Korresponndenzprinzip für die dynamische Idealviskosität und die Idealwärmeleitfähigkeit reiner Stoffe. Wärme- und Stoffübertragung 4, 127 (1971)

    Article  Google Scholar 

  62. Stokes, R.H. and Mills, R.: Viscosity of electrolytes and related properties. Int. Encycl. phys. chem. chem. phys., 3, 16, Pergamon, London (1965)

    Google Scholar 

  63. Taylor, G.I.: The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. 138A, 41 (1932)

    Google Scholar 

  64. Thoulet, J. and Chevallier, A.: Sur la chaleur specifique de l’eau de mer a divers degres de dilution et de concentration. C. R. Acad. Sci. Paris 108(15), 794–796 (1889)

    Google Scholar 

  65. Tilton, L.W. and Taylor, J.K.: Accurate representation of the refractivity and density of distilled water as a function of temperature. J. Res. Natl. Bur. Stand. 18, 205 (1937)

    Article  Google Scholar 

  66. Truesdell, C.A. and Muncaster, R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic, New York, NY, XXVIII+593 p. (1980)

    Google Scholar 

  67. Tufeu, R.: Etude expérimental en fonction de la température et de la conductivité thermique de l’ensemble des gaz rares et de mélanges hélium-argon. Ph.D. thesis, Université de Paris VI, 120 p., 47 figures, XIV tables (1971)

    Google Scholar 

  68. Wang D.P. and Millero F.J.: Precise representation of the P-V-T properties of water and sea water determined from sound speeds. J. Geophys. Res. 78(30), 7122–7128 (1973)

    Article  Google Scholar 

  69. Wilson, W. and Bradley, D.: An absolute determination of viscosity using a torsional pendulum. Deep Sea Res. 15, 355 (1968)

    Google Scholar 

  70. White, H.S. and Kersley, E.A.: An absolute determination of viscosity using a torsional pendulum. J. Res. Natl. Bur. Stand. 75A(6), 541 (1971)

    Article  Google Scholar 

  71. Zubov, N.N.: Oceanological Tables. Hydrometeoizdat, Leningrad, 126 p. (1957) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hutter, K., Wang, Y., Chubarenko, I.P. (2011). Phenomenological Coefficients of Water. In: Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15178-1_10

Download citation

Publish with us

Policies and ethics