Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Physics of Lakes

Abstract

Limnology, the science of lakes, has been in the past primarily a field of activity of the biological and chemical sciences with only limited interaction with physics. This fact has its historical justification as the study of lakes has primarily been motivated by questions of biological concern, and these are deeply rooted in the life sciences among which biology and chemistry play an important role. A certain significance of physics has nevertheless always been accepted – for instance, the seasonal variation of the temperature distribution in a lake has always been recognised to be the result of solar radiation and wind action at the water surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In lake waters the density is in many cases negligibly affected by the content of the minerals – the salts. This is not so in the ocean, in fjords and lagoons, as well as in salty lakes. The density structure is physically important.

  2. 2.

    The word ‘seiche’ derives from old French as spoken in the Roman part of Switzerland ‘sec’ and means ‘dry’. It has been used in the 19th century (by Forel [9] and earlier) in the region of Lake Geneva to denote the surface oscillation of the water level along the shore, drying periodically a strip of the shoreline. Today by ‘seiche’ a periodic lake oscillation is generally meant. According to Forel, the word ‘seiche’ characterising lake oscillations, is due to Fatio de Duillier [4] and occurred in his paper in 1730.

  3. 3.

    Turbulence arose from the recognition that the flow of water, e.g., in a pipe can have two distinct appearances: (i) laminar flow, in which the flow is smooth and streaklines from a point source are maintained as small filaments and (ii) turbulent flow, in which the filaments are torn apart and spread over larger regions of the domain of the fluid. For instance, the streakline of the smoke of a still cigarette is smooth and narrowly confined for a certain distance and then suddenly torn apart and wound in complicated gyres or eddies . Such eddies of many sizes are a typical characteristic of turbulent flow, and they affect fluid mechanics of lakes substantially.

  4. 4.

    Data in this section have been collected mainly by consulting sources in the Internet, e.g. http://www.ilec.or.jp.

  5. 5.

    For pure water the density maximum is reached at 3.8°C, but many parameterisations use 4°C instead.

  6. 6.

    Wind set-up is used to mean the inclination of the lake surface set-up under the action of a steady (uniform) wind blowing along a lake surface.

  7. 7.

    Henceforth, we shall use the denotations ‘littoral’ and pelagial to denote these disjoint zones. This is used in limnology, while in oceanography, ‘littoral’ means ‘a coastal zone between high and low tide marks’.

  8. 8.

    The sediments, free of vegetation, that lie below the pelagial zone are referred to as the profundal zone .

References

  1. Anati, D.A., Stiller, M., Shasha, S. and Gat, J.R.: Changes in the thermohaline structure of the Dead Sea: 1979–1984. Earth Planet. Sci. Lett. 84, 109–121 (1987)

    Article  Google Scholar 

  2. Bäuerle, E., Chubarenko, B., Chubarenko, I., Halder, J., Hutter, K. and Wang, Y.: Autumn Physical Limnological Experimental Campaign in the Mainau Island Littoral Zone of Lake Constance (Constance Data Band) 12 October – 19 November 2001. Report of the ‘Sonderforschungsbereich 454 Bodenseelittoral’, 85 p. (2002)

    Google Scholar 

  3. Bäuerle, E., Ollinger, D. and Ilmberger, J: Some meteorological, hydrological, and hydrodynamical aspects of upper lake constance. In: Arch. Hydrobiol. Spec. Issues Advanc. Limnol. Lake Constance: Characterization of an ecosystem in transition. (eds. Bäuerle, E. and Gaedke, U.), 53, 31–83 (1998)

    Google Scholar 

  4. Fatio de Duillier, J.-C.: Remarques sur l’histoire naturelle du Lac de Genève. In Spon, Histoire de Genéve II, 463 (1730)

    Google Scholar 

  5. Filatov, N.N.: Dynamics of Lakes. Leningrad, Hydrometeoizdat, 165p. (1983) (In Russian)

    Google Scholar 

  6. Findenegg, I.: Die Schichtungsverhältnisse im Wörthersee. Arch. Hydrobiol. 24, 253–262 (1932)

    Google Scholar 

  7. Findenegg, I.: Zur Naturgeschichte des Wörthersees. Carinthia II, Sonderheft 2, 1–63 (1933a)

    Google Scholar 

  8. Findenegg, I.: Alpenseen ohne Vollzirkulation. Int. Rev. Hydrobiol. 28, 295–311 (1933b)

    Article  Google Scholar 

  9. Forel, F.A.: Le Léman: monographie limnologique, (F. Rouge, Librairie de l’Université de Lausanne Vol. 1, 1892, 539p.; Vol. 2, 1895, 651p.; Vol. 3, 1904, 715p.)

    Google Scholar 

  10. Heaps, N.S., Mortimer, C.H. and Fee, E.J.: Numerical models and observations of water motion in Green–Bay, Lake Michigan. Phil. Trans. Royal. Soc., London A306, 371–398 (1982)

    Google Scholar 

  11. Hollan, E., Rao, D.B. and Bäuerle, E.: Free surface oscillations in Lake Constance with an interpretation of the “Wunder of the rising water at Konstanz” 1549. Arch. Met. Geophys. Biokl. A 29, 301–315 (1980)

    Google Scholar 

  12. Hutchinson, G.E. and Löffler, H.: The thermal classification of lakes. Proc. Natl. Acad. Sci. 42, 84–86 (1956)

    Article  Google Scholar 

  13. Imboden, D.M. and Wüest, A.: Mixing mechanisms in lakes. In: Physics and Chemistry of Lakes (eds. Lerman, A., Imboden, D.M. and Gat, J.R.), Springer Verlag, Berlin, 83–138 (1995)

    Chapter  Google Scholar 

  14. Jänichen, H.: Wirtschaft und Verkehr. In: Der Landkreis Konstanz, amtliche Kreisbeschreibung. Hrsg. Staatliche Archivverwaltung Baden-Württemberg. 1, 361–404 (1968)

    Google Scholar 

  15. Jöhnk, K.: Ein eindimensionales hydrodynamisches Modell in der Limnophysik. Turbulenz–Meromixis–Sauerstoff. Habilitatiosschrift, Fachbereich Mechanik, Technische Hochschule Darmstadt, Darmstadt, 235 p. (2000)

    Google Scholar 

  16. Mortimer, C.H.: Lake hydrodynamics. Mitt. Int. Ver. Limnol. 20, 124–197 (1974)

    Google Scholar 

  17. Mortimer, C.H.: Frontiers in physical limnology with particular reference to long waves in rotating basins. Proc. 5th Conf. Great Lakes Res. Univ. Mich. Publ. 9, 9–42 (1963)

    Google Scholar 

  18. Naumenko, M.A.: Some aspects of the thermal regime of large lakes: Lake Ladoga and Lake Onega. Water Poll. Res. J. Can. 29, (2–3), 423–439 (1994)

    Google Scholar 

  19. Schulthaiss, C.: Wunder anloffen des Wassers. Collectaneen, VI, 80–81. Stadtarchiv Konstanz (1549)

    Google Scholar 

  20. Shimaraev, M.N., Granin, N.G. and Zhdanov, A.A.: The role of spring thermal bars in the deep ventilation of Lake Baikal water. Limnol. Oceanogr. 38(5), 1068–1072 (1993)

    Article  Google Scholar 

  21. Shimaraev, M.N., Verbolov, V.I., Granin, N.G. and Sherstyankin, P.P.: Physical limnology of Lake Baikal: A Review. (eds. Shimaraev, M.N. and Okuda S.), Baikal International Center for Ecological Research Irkutsk-Okayama. 89 p. (1991)

    Google Scholar 

  22. Tikhomirov, A.I.: Thermics of Large Lakes. Leningrad, Nauka Publishing House, 232 p. (1982) (In Russian)

    Google Scholar 

  23. Wagner, G.: Untersuchungen am zugefrorenen Bodensee. Schweiz. Z. Hydrol. 26, 52–68 (1964)

    Google Scholar 

  24. Weisbach, J.: Der Ingenieur. Sammlung von Tafeln, Formeln und Regeln der Arithmetik, der theoretischen und praktischen Geometrie sowie der Mechanik und des Ingenieurwesens. 3. Aufl. F. Vieweg & Sohn, Braunschweig, 862 p. (1860)

    Google Scholar 

  25. Wüest, A., Ravens, T.M., Granin, N.G., Kocsis, O., Schurter, M. and Sturm, M.: Cold intrusions in Lake Baikal: Direct observational evidence for deep-water renewal. Limnol. Oceanogr. 50 (1), 184–196 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hutter, K., Wang, Y., Chubarenko, I.P. (2011). Introduction. In: Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15178-1_1

Download citation

Publish with us

Policies and ethics