Skip to main content

New Analytical Tools for Evaluation of Spherical Aberration in Optical Microscopy

  • Chapter
  • First Online:
Optical Fluorescence Microscopy

Abstract

The required tightly focused spots in three-dimensional (3D) scanning optical techniques are usually achieved by high-NA immersion lenses. The refractive index mismatch between the sample and the immersion medium introduces an important amount of spherical aberration when imaging deep inside the specimen, spreading out the focusing response. Since this aberration depends on the focalization depth, it is not possible to simultaneously achieve a global compensation for the whole scanned sample. In this way, the design of pupil elements that increase the tolerance to this aberration is of great interest. We present a new formalism for the evaluation and the design of filters that decrease the sensitivity to spherical aberration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Booth MJ, Wilson T (2000) Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin. J Microsc 200:68–74

    Article  PubMed  CAS  Google Scholar 

  • Booth MJ, Neil MAA, Wilson T (1998) Aberration correction for confocal imaging in refractive-index-mismatched media. J Microsc 192:90–98

    Article  Google Scholar 

  • Braat J (1997) Influence of substrate thickness on optical disk readout. Appl Opt 36:8056–8062

    Article  PubMed  CAS  Google Scholar 

  • Day D, Gu M (1998) Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer. Appl Opt 37:6299–6304

    Article  PubMed  CAS  Google Scholar 

  • Gu M (2000) Advanced optical imaging theory. Springer-Verlag, Berlin

    Google Scholar 

  • Haeberlé O, Ammar M, Furukawa H, Tenjimbayashi K, Torok P (2003) Point spread function of optical microscopes imaging through stratified media. Opt Express 11:2964–2969

    Article  PubMed  Google Scholar 

  • Hell S, Reiner G, Cremer C, Stelzer EHK (1993) Aberrations in confocal fluorescence microscopy induced by mismatches in refractive-index. J Microsc 169:391–405

    Article  Google Scholar 

  • Ke PC, Gu M (1998) Characterization of trapping force in the presence of spherical aberration. J Mod Opt 45:2159–2168

    Article  Google Scholar 

  • Lü B, Luo S (2000) Beam propagation factor of hard-edge diffracted cosh-Gaussian beams. Opt Commun 178:275–281

    Article  Google Scholar 

  • Martinez-Corral M, Saavedra G (2009) The resolution challenge in 3D optical microscopy. Prog Opt 53:1–67

    Article  Google Scholar 

  • Martínez-Herrero R, Mejías PM (1993) Second-order spatial characterization of hard-edge diffracted beams. Opt Lett 18:1669–1671

    Article  PubMed  Google Scholar 

  • Martínez-Herrero R, Mejías PM, Arias M (1995) Parametric characterization of coherent, lowest-order Gaussian beams propagating through hard-edged apertures. Opt Lett 20:124–126

    Article  PubMed  Google Scholar 

  • Reihani SNS, Khalesifard HR, Golestanian R (2006) Measuring lateral efficiency of optical traps: the effect of tube length. Opt Commun 259:204–211

    Article  CAS  Google Scholar 

  • Saavedra G, Escobar I, Martínez-Cuenca R, Sánchez-Ortiga E, Martínez-Corral M (2009) Reduction of spherical-aberration impact in microscopy by wavefront coding. Opt Express 17:13810–13818

    Article  PubMed  CAS  Google Scholar 

  • Schwertner M, Booth MJ, Wilson T (2005) Simple optimization procedure for objective lens correction collar setting. J Microsc 217:184–187

    Article  PubMed  CAS  Google Scholar 

  • Sheppard CJR (1987) Scanning optical microscopy. In: Barer R, Cosslett VE (eds) Advances in optical and electron microscopy, vol 10. Academic, London, pp 1–98

    Google Scholar 

  • Sheppard CJR (1995) Aberrations in high aperture optical systems. Optik 101:1–5

    Google Scholar 

  • Sheppard CJR (1998) Aberrations in high aperture conventional and confocal imaging systems. Appl Opt 27:4782–4786

    Article  Google Scholar 

  • Sheppard CJR, Cogswell CJ (1991) Effects of aberrating layers and tube length on confocal imaging properties. Optik 87:34–38

    Google Scholar 

  • Sheppard CJR, Gu M (1993) Imaging by a high aperture optical system. J Mod Opt 40:1631–1651

    Article  Google Scholar 

  • Stallinga S (2005a) Compact description of substrate-related aberrations in high numerical-aperture optical disk readout. Appl Opt 44:849–858

    Article  PubMed  Google Scholar 

  • Stallinga S (2005b) Finite conjugate spherical aberration compensation in high numerical-aperture optical disc readout. Appl Opt 44:7307–7312

    Article  PubMed  Google Scholar 

  • Török P, Varga P (1997) Electromagnetic diffraction of light focused through a stratified medium. Appl Opt 36:2305–2312

    Article  PubMed  Google Scholar 

  • Török P, Varga P, Laczik Z, Broker GR (1995a) Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes: an integral-representation. J Opt Soc Am A 12:325–332

    Article  Google Scholar 

  • Török P, Varga P, Németh G (1995b) Analytical solution of the diffraction integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive-indexes. J Opt Soc Am A 12:2660–2671

    Article  Google Scholar 

  • Török P, Hewlett SJ, Varga P (1997) The role of specimen-induced spherical aberration in confocal microscopy. J Microsc 188:158–172

    Article  Google Scholar 

  • Wilson T, Carlini AR (1988) Three-dimensional imaging in confocal imaging-systems with finite sized detectors. J Microsc 149:51–66

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Plan Nacional I+D+I (grant FIS2009-9135), Ministerio de Ciencia e Innovación, Spain. Financial support is also acknowledged from Generalitat Valenciana (grant PROMETEO/2009/077), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Martínez-Corral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Escobar, I., Sánchez-Ortiga, E., Saavedra, G., Martínez-Corral, M. (2011). New Analytical Tools for Evaluation of Spherical Aberration in Optical Microscopy. In: Diaspro, A. (eds) Optical Fluorescence Microscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15175-0_5

Download citation

Publish with us

Policies and ethics