Skip to main content

In Vitro–In Vivo Fluctuation Spectroscopies

  • Chapter
  • First Online:

Abstract

Fluorescence correlation spectroscopy (FCS) was first developed for biophysical studies in analogy with photon scattering correlation spectroscopy. Although it is mainly devoted to the study of freely diffusing particles, FCS is actually able to discern between different kinds of motions, such as diffusion, anomalous diffusion, or drift motions. The frontier application of FCS nowadays is in medical studies both within cells and on the cell membranes, and in the investigation of single molecules in solid matrices. In this field, FCS originated also image correlation spectroscopy methods. The whole field can be unified under the name of fluorescence fluctuation spectroscopy (FFS). We present here a short review of the theoretical bases of FFS under a unified vision and discuss some applications to the study of dynamics of nanoparticles in cells and to the investigation of the photodynamics of immobilized dyes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We have used the relation: \( {\left| {{{\hat{W}}_{DB}}({\mathbf{q}},{\mathbf{R}})} \right|^2} = 2{\left| {\hat{W}({\mathbf{q}})} \right|^2}\left( {1 + \cos \left[ {{\mathbf{q}} \cdot {\mathbf{R}}} \right]} \right) \)

References

  • Aragon SR, Pecora R (1976) Fluorescence correlation spectroscopy as a probe of molecular-dynamics. J Chem Phys 64:1791–1803

    Article  CAS  Google Scholar 

  • Berland K, Shen GQ (2003) Excitation saturation in two-photon fluorescence correlation spectroscopy. Appl Opt 42:5566–5576

    Article  PubMed  Google Scholar 

  • Berland KM, So PT, Gratton E (1995) Two-photon fluorescence correlation spectroscopy – method and application to the intracellular environment. Biophys J 68:694–701

    Article  CAS  PubMed  Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover, Mineola

    Google Scholar 

  • Bismuto E, Gratton E, Lamb DC (2001) Dynamics of ANS binding to tuna apomyoglobin measured with fluorescence correlation spectroscopy. Biophys J 81:3510–3521

    Article  CAS  PubMed  Google Scholar 

  • Botto L, Beretta E, Bulbarelli A, Rivolta I, Lettiero B, Miserocchi G, Palestini P (2008) Hypoxia-Induced modifications in plasma membranes and lipid microdomains in A 549 cells and primari human alveolar cells. J Cell Biochem 105(2):503–513

    Article  PubMed  Google Scholar 

  • Brinkmeier M, Dorre K, Stephan J, Eigen M (1999) Two beam cross correlation: a method to characterize transport phenomena in micrometer-sized structures. Anal Chem 71:609–616

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Muller JD, Ruan QQ, Gratton E (2002) Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys J 82:133–144

    Article  CAS  PubMed  Google Scholar 

  • Chirico G, Gardella M (1999) Photon cross-correlation spectroscopy to 10-ns resolution. Appl Opt 38:2059–2067

    Article  CAS  PubMed  Google Scholar 

  • Chirico G, Cannone F, Baldini G, Diaspro A (2003) Two-photon thermal bleaching of single fluorescent molecules. Biophys J 84:588–598

    Article  CAS  PubMed  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  PubMed  Google Scholar 

  • Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chemphyschem 8:433–443

    Article  CAS  PubMed  Google Scholar 

  • Dickson RM, Cubitt AM, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of singlemolecules of green fluorescent protein. Nature 388:355–358

    Article  CAS  PubMed  Google Scholar 

  • Dittrich PS, Schwille P (2002) Spatial two-photon fluorescence cross-correlation Spectroscopy for controlling molecular transport in microfluidic structures. Anal Chem 74:4472–4479

    Article  CAS  PubMed  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  • Eggeling C, Widengren J, Rigler R, Seidel CAM (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70:2651–2659

    Article  CAS  PubMed  Google Scholar 

  • Eggeling C, Volkmer A, Seidel CAM (2005) Molecular photobleaching kinetics of Rhodamine 6G under the conditions of one- and two-photon induced confocal fluorescence microscopy. Chemphyschem 6:791–804

    Article  CAS  PubMed  Google Scholar 

  • Enderlein J, Gregor I, Patra D, Fitter J (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5:155–161

    Article  CAS  PubMed  Google Scholar 

  • Gosch M, Rigler R (2005) Fluorescence correlation spectroscopy of molecular motions and kinetics. Adv Drug Deliv Rev 57:169–190

    Article  PubMed  Google Scholar 

  • Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29:153–166

    Article  CAS  PubMed  Google Scholar 

  • Hobel M, Ricka J (1994) Dead-time and afterpulsing correction in multiphoton timing with nonideal detectors. Rev Sci Instrum 65:2326–2336

    Article  Google Scholar 

  • Kohl T, Haustein E, Schwille P (2005) Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys J 89:2770–2782

    Article  CAS  PubMed  Google Scholar 

  • Magde D, Webb WW, Elson E (1972) Thermodynamic fluctuations in a reacting system – measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  • Malengo G, Milani R, Cannone F, Krol S, Diaspro A, Chirico G (2004) High sensitivity optical microscope for single molecule spectroscopy studies. Rev Sci Instrum 75(8):2746–2751

    Article  CAS  Google Scholar 

  • Muller JD, Chen Y, Gratton E (2003) Fluorescence correlation spectroscopy. Biophotonics, PT B 361:69–92

    Article  CAS  Google Scholar 

  • Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91:1915–1924

    Article  CAS  PubMed  Google Scholar 

  • Skinner JP, Chen Y, Muller JD (2005) Position-sensitive scanning fluorescence correlation spectroscopy. Biophys J 89:1288–1301

    Article  CAS  PubMed  Google Scholar 

  • Weidemann T, Wachsmuth M, Knoch TA, Muller G, Waldeck W, Langowski J (2003) Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. J Mol Biol 334:229–240

    Article  CAS  PubMed  Google Scholar 

  • Xia KQ, Xin YB, Tong P (1995) Dual-beam incoherent cross-correlation spectroscopy. J Opt Soc Am A 12:1571–1578

    Article  Google Scholar 

  • Xiao Y, Buschmann V, Weston KD (2005) Scanning fluorescence correlation spectroscopy: a tool for probing microsecond dynamics of surface-bound fluorescent species. Anal Chem 77:36–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the Fondazione Cariplo (fund 2005-1079 to G.C.) and the MIUR Prin fund (2006027587 to G.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chirico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Collini, M. et al. (2011). In Vitro–In Vivo Fluctuation Spectroscopies. In: Diaspro, A. (eds) Optical Fluorescence Microscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15175-0_10

Download citation

Publish with us

Policies and ethics